Transport Layer – Part II

Computer Networks, Winter 2010/2011

Last Session

Chapter 4 outline

- 3.1 Transport-layer services
- 3.2 Multiplexing and demultiplexing
- 3.3 Connectionless transport: UDP
- 3.4 Principles of reliable data transfer

- 3.5 Connection-oriented transport: TCP
 - segment structure
 - reliable data transfer
 - flow control
 - connection management
- 3.6 Principles of congestion control
- 3.7 TCP congestion control

Pipelining Protocols

Go-back-N: big picture:

- Sender can have up to N unacked packets in pipeline
- Rcvr only sends cumulative acks
 - Doesn't ack packet if there's a gap
- Sender has timer for oldest unacked packet
 - If timer expires, retransmit all unacked packets

Selective Repeat: big pic

- Sender can have up to N unacked packets in pipeline
- Rcvr acks individual packets
- Sender maintains timer for each unacked packet
 - When timer expires, retransmit only unack packet

Go-Back-N

Sender:

- k-bit seq # in pkt header
- "window" of up to N, consecutive unack'ed pkts allowed

- ACK(n): ACKs all pkts up to, including seq # n "cumulative ACK"
 - may receive duplicate ACKs (see receiver)
- timer for each in-flight pkt
- timeout(n): retransmit pkt n and all higher seq # pkts in window

Applet Demo

http://media.pearsoncmg.com/aw/aw_kurose_network_2/applets/go-back-n/go-back-n.html

- http://media.pearsoncmg.com/aw/aw_kurose_network_3/applets/SelectRepeat/SR.html
- (Self Study)

GBN: sender extended FSM

```
rdt send(data)
                       if (nextseqnum < base+N) {
                          sndpkt[nextseqnum] = make pkt(nextseqnum,data,chksum)
                          udt send(sndpkt[nextseqnum])
                          if (base == nextseqnum)
                           start timer
                          nextseqnum++
                       else
                        refuse data(data)
  base=1
  nextsegnum=1
                                          timeout
                                          start timer
                             Wait
                                          udt_send(sndpkt[base])
                                          udt send(sndpkt[base+1])
rdt_rcv(rcvpkt)
 && corrupt(rcvpkt)
                                          udt send(sndpkt[nextsegnum-1])
                         rdt rcv(rcvpkt) &&
                           notcorrupt(rcvpkt)
                         base = getacknum(rcvpkt)+1
                         If (base == nextseqnum)
                           stop timer
                          else
                           start_timer
```


GBN: receiver extended FSM

ACK-only: always send ACK for correctly-received pkt with highest *in-order* seq

- may generate duplicate ACKs
- o need only remember expectedseqnum
- o out-of-order pkt:
 - discard (don't buffer) -> no receiver buffering!
 - Re-ACK pkt with highest in-order seq #

GBN in action

Selective Repeat

- receiver individually acknowledges all correctly received pkts
 - buffers pkts, as needed, for eventual in-order delivery to upper layer
- sender only resends pkts for which ACK not received
 - sender timer for each unACKed pkt
- sender window
 - N consecutive seq #'s
 - again limits seq #s of sent, unACKed pkts

Selective repeat: sender, receiver windows

Selective repeat

sender

data from above:

 if next available seq # in window, send pkt

timeout(n):

resend pkt n, restart timer

ACK(n) in [sendbase,sendbase+N]:

- mark pkt n as received
- if n smallest unACKed pkt, advance window base to next unACKed seq #

receiver

pkt n in [rcvbase, rcvbase+N-1]

- send ACK(n)
- out-of-order: buffer
- in-order: deliver (also deliver buffered, in-order pkts), advance window to next notyet-received pkt

pkt n in [rcvbase-N,rcvbase-1]

ACK(n)

otherwise:

o ignore

Selective repeat in action

Selective repeat: dilemma

Example:

- seq #'s: 0, 1, 2, 3
- window size=3
- receiver sees no difference in two scenarios!
- incorrectly passes duplicate data as new in (a)

Notice: Window size should be not too large, e.g. ½ of sequence range.

Chapter 4 outline

- 3.1 Transport-layer services
- 3.2 Multiplexing and demultiplexing
- 3.3 Connectionless transport: UDP
- 3.4 Principles of reliable data transfer

- 3.5 Connection-oriented transport: TCP
 - segment structure
 - reliable data transfer
 - flow control
 - connection management
- 3.6 Principles of congestion control
- 3.7 TCP congestion control

TCP: Overview

2581

- point-to-point:
 - one sender, one receiver
- reliable, in-order byte steam:
 - no "message boundaries"
- pipelined:
 - TCP congestion and flow control set window size
- send & receive buffers

RFCs: 793, 1122, 1323, 2018,

- bi-directional data flow in same connection
- MSS: maximum segment size
- o connection-oriented:
 - handshaking (exchange of control msgs) init's sender, receiver state before data exchange
- o flow controlled:
 - sender will not overwhelm receiver

TCP segment structure

URG: urgent data (generally not used)

ACK: ACK # valid

PSH: push data now (generally not used)-

RST, SYN, FIN: connection estab (setup, teardown commands)

> Internet checksum' (as in UDP)

counting by bytes of data (not segments!)

> # bytes rcvr willing to accept

TCP seq. #'s and ACKs

Seq. #'s:

byte stream

 "number" of first
 byte in segment's
 data

ACKs:

- seq # of next byte expected from other side
- cumulative ACK

Q: how receiver handles out-of-order segments

 A: TCP spec doesn't say, - up to implementor

TCP Round Trip Time and Timeout

- Q: how to set TCP timeout value?
- longer than RTT
 - but RTT varies
- too short: premature timeout
 - unnecessary retransmissions
- too long: slow reaction to segment loss

- Q: how to estimate RTT?
- SampleRTT: measured time from segment transmission until ACK receipt
 - ignore retransmissions
- SampleRTT will vary, want estimated RTT "smoother"
 - average several recent measurements, not just current SampleRTT

TCP Round Trip Time and Timeout

EstimatedRTT = $(1 - \alpha)$ *EstimatedRTT + α *SampleRTT

- Exponential weighted moving average
- influence of past sample decreases exponentially fast
- □ typical value: α = 0.125

Example RTT estimation:

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

TCP Round Trip Time and Timeout

Setting the timeout

- EstimtedRTT plus "safety margin"
 - large variation in EstimatedRTT -> larger safety margin
- first estimate of how much SampleRTT deviates from EstimatedRTT:

DevRTT =
$$(1-\beta)$$
*DevRTT + β *|SampleRTT-EstimatedRTT|

(typically, $\beta = 0.25$)

Then set timeout interval:

TimeoutInterval = EstimatedRTT + 4*DevRTT

Chapter 4 outline

- 3.1 Transport-layer services
- 3.2 Multiplexing and demultiplexing
- 3.3 Connectionless transport: UDP
- 3.4 Principles of reliable data transfer

- 3.5 Connection-oriented transport: TCP
 - segment structure
 - reliable data transfer
 - flow control
 - connection management
- 3.6 Principles of congestion control
- 3.7 TCP congestion control

TCP reliable data transfer

- TCP creates rdt service on top of IP's unreliable service
- Pipelined segments
- Cumulative acks
- TCP uses single retransmission timer

- Retransmissions are triggered by:
 - timeout events
 - duplicate acks
- Initially consider simplified TCP sender:
 - ignore duplicate acks
 - ignore flow control, congestion control

TCP sender events:

data rcvd from app:

- Create segment with seq #
- seq # is byte-stream number of first data byte in segment
- start timer if not already running (think of timer as for oldest unacked segment)
- o expiration interval: TimeOutInterval

timeout:

- retransmit segment that caused timeout
- restart timer

Ack rcvd:

- If acknowledges previously unacked segments
 - update what is known to be acked
 - start timer if there are outstanding segments


```
NextSeqNum = InitialSeqNum
SendBase = InitialSeqNum
loop (forever) {
  switch(event)
  event: data received from application above
      create TCP segment with sequence number NextSeqNum
      if (timer currently not running)
         start timer
      pass segment to IP
      NextSegNum = NextSegNum + length(data)
   event: timer timeout
      retransmit not-yet-acknowledged segment with
           smallest sequence number
      start timer
   event: ACK received, with ACK field value of y
      if (y > SendBase) {
         SendBase = y
         if (there are currently not-yet-acknowledged segments)
              start timer
```

TCP sender (simplified)

Comment:

- SendBase-1: last cumulatively ack'ed byte Example:
- SendBase-1 = 71; y= 73, so the rcvr wants 73+; y > SendBase, so that new data is acked

TCP: retransmission scenarios

TCP retransmission scenarios (more)

Cumulative ACK scenario

TCP ACK generation [RFC 1122, RFC 2581]

Event at Receiver	TCP Receiver action	
Arrival of in-order segment with expected seq #. All data up to expected seq # already ACKed	Delayed ACK. Wait up to 500ms for next segment. If no next segment, send ACK	
Arrival of in-order segment with expected seq #. One other segment has ACK pending	Immediately send single cumulative ACK, ACKing both in-order segments	
Arrival of out-of-order segment higher-than-expect seq. # . Gap detected	Immediately send duplicate ACK, indicating seq. # of next expected byte	
Arrival of segment that partially or completely fills gap	Immediate send ACK, provided that segment starts at lower end of gap	

Fast Retransmit

- Time-out period often relatively long:
 - long delay before resending lost packet
- Detect lost segments via duplicate ACKs.
 - Sender often sends many segments back-toback
 - If segment is lost, there will likely be many duplicate ACKs.

- If sender receives 3
 ACKs for the same data,
 it supposes that segment
 after ACKed data was
 lost:
 - <u>fast retransmit:</u> resend segment before timer expires

Figure 3.37 Resending a segment after triple duplicate ACK

Fast retransmit algorithm:

```
event: ACK received, with ACK field value of y
          if (y > SendBase) {
             SendBase = y
              if (there are currently not-yet-acknowledged segments)
                 start timer
          else {
               increment count of dup ACKs received for y
               if (count of dup ACKs received for y = 3) {
                  resend segment with sequence number y
```

a duplicate ACK for already ACKed segment

fast retransmit

Chapter 4 outline

- 3.1 Transport-layer services
- 3.2 Multiplexing and demultiplexing
- 3.3 Connectionless transport: UDP
- 3.4 Principles of reliable data transfer

- 3.5 Connection-oriented transport: TCP
 - segment structure
 - reliable data transfer
 - flow control
 - connection management
- 3.6 Principles of congestion control
- 3.7 TCP congestion control

Analogy: Flow Control

Assumptions:

- Secretary delivers mail at rate of 4 letters/h
- Employee Bill processes mail at 1 letter/h.
- Table has place for 10 letters, more will drop on floor.
- After half a day his table overflows, letters get lost.
- Sender needs to decrease sending rate.

time	Mail read	Mail on table
9:00	0	4
10:00	1	7
11:00	2	10
12:00	3	13 !

TCP Flow Control

 receive side of TCP connection has a receive buffer:

 app process may be slow at reading from buffer

flow control

sender won't overflow receiver's buffer by transmitting too much, too fast

speed-matching service: matching the send rate to the receiving app's drain rate

TCP Flow control: how it works

(Suppose TCP receiver discards out-of-order segments)

- spare room in buffer
- = RcvWindow

- Rcvr advertises spare room by including value of RcvWindow in segments
- Sender limits unACKed data to RcvWindow
 - guarantees receive buffer doesn't overflow

Chapter 4 outline

- 3.1 Transport-layer services
- 3.2 Multiplexing and demultiplexing
- 3.3 Connectionless transport: UDP
- 3.4 Principles of reliable data transfer

- 3.5 Connection-oriented transport: TCP
 - segment structure
 - reliable data transfer
 - flow control
 - connection management
- 3.6 Principles of congestion control
- 3.7 TCP congestion control

TCP Connection Management

- Recall: TCP sender, receiver establish "connection" before exchanging data segments
- initialize TCP variables:
 - o seq. #s
 - buffers, flow control info (e.g. RcvWindow)
- o client: connection initiator
 Socket clientSocket = new
 Socket("hostname", "port
 number");
- o server: contacted by client
 Socket connectionSocket =
 welcomeSocket.accept();

Three way handshake:

- Step 1: client host sends TCP
 SYN segment to server
 - specifies initial seq #
 - o no data
- Step 2: server host receives SYN, replies with SYNACK segment
 - server allocates buffers
 - specifies server initial seq. #
- Step 3: client receives SYNACK, replies with ACK segment, which may contain data

TCP Connection Management (cont.)

Closing a connection:

client closes socket:
 clientSocket.close();

Step 1: client end system sends TCP FIN control segment to server

Step 2: server receives FIN, replies with ACK. Closes connection, sends FIN.

TCP Connection Management (cont.)

Step 3: client receives FIN, replies with ACK.

 Enters "timed wait" - will respond with ACK to received FINs

Step 4: server, receives ACK. Connection closed.

Note: with small modification, can handle simultaneous FINs.

TCP Connection Management (cont)

Chapter 4 outline

- 3.1 Transport-layer services
- 3.2 Multiplexing and demultiplexing
- 3.3 Connectionless transport: UDP
- 3.4 Principles of reliable data transfer

- 3.5 Connection-oriented transport: TCP
 - segment structure
 - reliable data transfer
 - flow control
 - connection management
- 3.6 Principles of congestion control
- 3.7 TCP congestion control

Principles of Congestion Control

Congestion:

- informally: "too many sources sending too much data too fast for network to handle"
- different from flow control! (overflow at receiver v.s. overflow on path routers)
- o manifestations:
 - lost packets (buffer overflow at routers)
 - long delays (queueing in router buffers)
- a top-10 problem!

- two senders, two receivers
- one router, infinite buffers
- no retransmission

- large delays when congested
 - maximum achievable throughput

- one router, finite buffers
- sender retransmission of lost packet

- $\begin{array}{ll} \circ & \text{always: } \lambda = \lambda \\ & \text{in} & \text{out} \\ \\ \circ & \text{`perfect'' retransmission only when loss: } \lambda \\ & \text{in} \\ \end{array} \begin{array}{ll} \lambda \\ & \text{out} \\ \end{array}$
- retransmission of delayed (not lost) packet makes $\lambda_{\text{in}}^{\cdot}$ larger (than perfect case) for same λ_{out}

"costs" of congestion:

- more work (retrans) for given "goodput"
- unneeded retransmissions: link carries multiple copies of pkt

- four senders
- multihop paths
- timeout/retransmit

Q: what happens as λ and λ'_{in} increase ?

Another "cost" of congestion:

when packet dropped, any "upstream transmission capacity used for that packet was wasted!

Approaches towards congestion control

Two broad approaches towards congestion control:

End-end congestion control:

- no explicit feedback from network
- congestion inferred from end-system observed loss, delay
- approach taken by TCP

Network-assisted congestion control:

- routers provide feedback to end systems
 - single bit indicating congestion (SNA, DECbit, TCP/IP ECN, ATM)
 - explicit rate sender should send at

Case study: ATM ABR congestion control

ABR: available bit rate:

- "elastic service"
- if sender's path "underloaded":
 - sender should use available bandwidth
- if sender's path congested:
 - sender throttled to minimum guaranteed rate

RM (resource management) cells:

- sent by sender, interspersed with data cells
- bits in RM cell set by switches ("network-assisted")
 - NI bit: no increase in rate (mild congestion)
 - CI bit: congestion indication
- RM cells returned to sender by receiver, with bits intact

Case study: ATM ABR congestion control

- two-byte ER (explicit rate) field in RM cell
 - congested switch may lower ER value in cell
 - sender' send rate thus maximum supportable rate on path
- EFCI bit in data cells: set to 1 in congested switch
 - if data cell preceding RM cell has EFCI set, sender sets CI bit in returned RM cell

Chapter 4 outline

- 3.1 Transport-layer services
- 3.2 Multiplexing and demultiplexing
- 3.3 Connectionless transport: UDP
- 3.4 Principles of reliable data transfer

- 3.5 Connection-oriented transport: TCP
 - segment structure
 - reliable data transfer
 - flow control
 - connection management
- 3.6 Principles of congestion control
- 3.7 TCP congestion control

TCP congestion control: additive increase, multiplicative decrease

- □ Approach: increase transmission rate (window size), probing for usable bandwidth, until loss occurs
 - additive increase: increase CongWin by 1 MSS every RTT until loss detected
 - o multiplicative decrease: cut CongWin in half after loss

Saw tooth behavior: probing for bandwidth

TCP Congestion Control: details

- sender limits transmission:
 LastByteSent-LastByteAcked
 ≤ CongWin
- Roughly,

rate =
$$\frac{\text{CongWin}}{\text{RTT}}$$
 Bytes/sec

 CongWin is dynamic, function of perceived network congestion

How does sender perceive congestion?

- loss event = timeout or
 3 duplicate acks
- TCP sender reduces rate (CongWin) after loss event

three mechanisms:

- AIMD
- slow start
- conservative after timeout events

TCP Slow Start

- When connection begins,CongWin = 1 MSS
 - Example: MSS = 500 bytes& RTT = 1000 msec (1sec)
 - initial rate = 500 bytes/s
- available bandwidth may be >> MSS/RTT
 - desirable to quickly ramp up to respectable rate

 When connection begins, increase rate exponentially fast until first loss event

TCP Slow Start (more)

- When connection begins, increase rate exponentially until first loss event:
 - double CongWin every RTT
 - done by incrementing
 CongWin for every ACK
 received
- Summary: initial rate is slow but ramps up exponentially fast

Refinement: inferring loss

- After 3 dup ACKs:
 - CongWin is cut in half
 - window then grows linearly
- <u>But</u> after timeout event:
 - CongWin instead set to 1 MSS;
 - window then grows exponentially
 - to a threshold, then grows linearly

Philosophy:

□ 3 dup ACKs indicates network capable of delivering some segments
□ timeout indicates a "more alarming" congestion scenario

Refinement

Q: When should the exponential increase switch to linear?

A: When CongWin gets to 1/2 of its value before timeout.

Implementation:

- Variable Threshold
- At loss event, Threshold is set to 1/2 of CongWin just before loss event

Summary: TCP Congestion Control

- When CongWin is below Threshold, sender in slow-start phase, window grows exponentially.
- When CongWin is above Threshold, sender is in congestion-avoidance phase, window grows linearly.
- When a triple duplicate ACK occurs, Threshold set to CongWin/2 and CongWin set to Threshold.
- When timeout occurs, Threshold set to CongWin/2 and CongWin is set to 1 MSS.

TCP sender congestion control

State	Event	TCP Sender Action	Commentary
Slow Start (SS)	ACK receipt for previously unacked data	CongWin = CongWin + MSS, If (CongWin > Threshold) set state to "Congestion Avoidance"	Resulting in a doubling of CongWin every RTT
Congestion Avoidance (CA)	ACK receipt for previously unacked data	CongWin = CongWin+MSS * (MSS/CongWin)	Additive increase, resulting in increase of CongWin by 1 MSS every RTT
SS or CA	Loss event detected by triple duplicate ACK	Threshold = CongWin/2, CongWin = Threshold, Set state to "Congestion Avoidance"	Fast recovery, implementing multiplicative decrease. CongWin will not drop below 1 MSS.
SS or CA	Timeout	Threshold = CongWin/2, CongWin = 1 MSS, Set state to "Slow Start"	Enter slow start
SS or CA	Duplicate ACK	Increment duplicate ACK count for segment being acked	CongWin and Threshold not changed

TCP throughput

- What's the average throughout of TCP as a function of window size and RTT?
 - Ignore slow start
- Let W be the window size when loss occurs.
- When window is W, throughput is W/RTT
- Just after loss, window drops to W/2, throughput to W/2RTT.
- Average throughout: .75 W/RTT

Chapter 4: Summary

- principles behind transport layer services:
 - multiplexing, demultiplexing
 - reliable data transfer
 - flow control
 - congestion control
- instantiation and implementation in the Internet
 - UDP
 - TCP

Next:

Networked Multmedia

Thank you

Any questions?

