Advanced Computer Networks

Stephan Sigg

Georg-August-University Goettingen, Computer Networks

03.07.2014

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Conclusion

Outline

Introduction


Radio channel effects

Security from RF

Security from noise

Security from audio

Conclusion

Conclusi

Motivation

Spontaneous authentication among mobile devices remains an unsolved problem in Mobile security.

- ▲日 > ▲園 > ▲ 園 > ▲ 園 > 夕久ぐ

Conclusion

Motivation

Spontaneous authentication among mobile devices remains an unsolved problem in Mobile security.

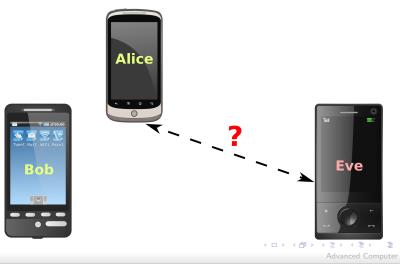
- ▲日 > ▲ 国 > ▲ 国 > ▲ 国 > 今 Q @

-

э

Eve

Motivation


Spontaneous authentication among mobile devices remains an unsolved problem in Mobile security.

Conclusion

Motivation

Spontaneous authentication among mobile devices remains an unsolved problem in Mobile security.

This lecture

- Effects of the radio channel
- Utilising RF information for authentication and security
- Fuzzy cryptography

Introduction

Security from audio

Conclusion

Outline

Introduction

Radio channel effects

Security from RF

Security from noise

Security from audio

Conclusion

Aspects of the mobile radio channel

RF transmission

- Electromagnetic signals
- Transmitted in wave-Form
- Omnidirectional transmission
- Speed of light

•
$$c = 3 \cdot 10^8 \frac{m}{s}$$

(a)

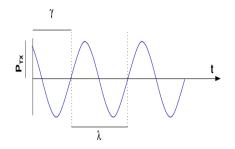
Security from audio

Conclu

Aspects of the mobile radio channel

RF signal

- Transmission power:
 - $P_{TX}[W]$
- Frequency:


•
$$f[\frac{1}{sec}]$$

Phase offset:

•
$$\gamma[\pi]$$

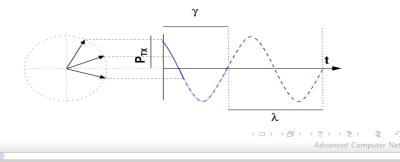
• Wavelength:

•
$$\lambda = \frac{c}{f}[m]$$

→ ∃ → → ∃ →

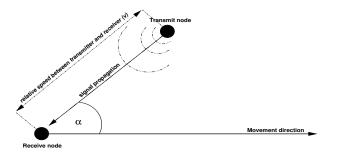
3

RF signal


• Real part of rotating vector

•
$$\zeta = \Re \left(e^{j(ft+\gamma)} \right)$$

• Instantaneous signal strength:


• $\cos(\zeta)$

• Rotation Speed: Frequency f

イロト 不得 トイヨト イヨト 二日

Aspects of the mobile radio channel

Doppler Shift

- Frequency of received and transmitted signal may differ
- Dependent on relative speed between transmitter and receiver
- $f_d = \frac{v}{\lambda} \cdot \cos(\alpha)$

Noise

- In every realistic setting, noise can be observed on the wireless channel
- Typical noise power:¹

$$P_N = -103 dBm$$

• Value observed by measurements

 $^{^{1}}$ 3GPP: 3rd generation partnership project; technical specification group radio access networks; 3g home nodeb study item technical report (release 8). Technical Report 3GPP TR 25.820 V8.0;0 (2008-03) (March) =

Noise

• Thermal noise can also be estimated analytically as

$$P_N = \kappa \cdot T \cdot B$$

- $\kappa = 1.3807 \cdot 10^{-23} \frac{J}{K}$: Boltzmann constant
- T: Temperature in Calvin
- B: Bandwidth of the signal.

Example

- GSM system with 200*kHz* bands
- Average temperature: 300K
- Estimated noise power:

$$P_N = \kappa \cdot T \cdot B$$

= 1.3807 \cdot 10^{-23} \frac{J}{K} \cdot 300 K \cdot 200 kHz
$$P_N = -120.82 dBm$$

불▶ ◀ 불▶ 불 ∽ ९ ↔ Advanced Computer Networks

Path-loss

- Signal strength decreases while propagating over a wireless channel
- Order of decay varies in different environments
- Impact higher for higher frequencies
- Can be reduced by antenna gain (e.g. directed)

Location	Mean Path loss exponent	Shadowing variance σ^2 (dB)
Apartment Hallway	2.0	8.0
Parking structure	3.0	7.9
One-sided corridor	1.9	8.0
One-sided patio	3.2	3.7
Concrete Canyon	2.7	10.2
Plant fence	4.9	9.4
Small boulders	3.5	12.8
Sandy flat beach	4.2	4.0
Dense bamboo	5.0	11.6
Dry tall underbrush	3.6	8.4

▲口 ▶ ▲圖 ▶ ▲ 画 ▶ ▲ 画 → つへ⊙

Path-loss

- For analytic consideration: Path-loss approximated
- Friis free-space equation:

$$P_{TX} \cdot \left(\frac{\lambda}{2\pi d}\right)^2 \cdot G_{TX} \cdot G_{RX}$$

<ロ> <@> < 注> < 注> < 注> < 三</p>

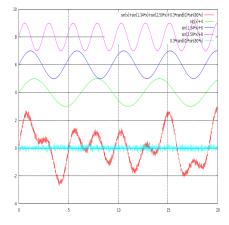
Path-loss

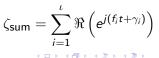
$$P_{RX} = P_{TX} \cdot \left(\frac{\lambda}{2\pi d}\right)^2 \cdot G_{TX} \cdot G_{RX}$$

Utilised in outdoor scenarios

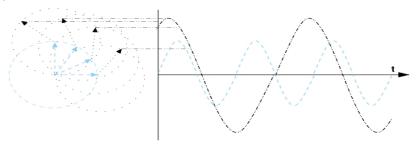
- Direct line of sight
- No multipath propagation
- d impacts the RSS quadratically
- Other values for the path-loss exponent α possible.
- Path-loss:

$$PL^{FS}(\zeta_i) = \frac{P_{TX}(\zeta_i)}{P_{RX}(\zeta_i)}$$

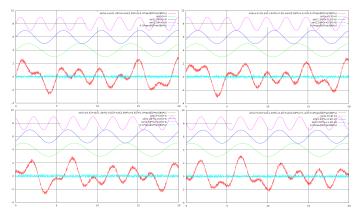

3


- 4 同 6 4 日 6 4 日 6

Superimposition of RF signals


- The wireless medium is a broadcast channel
- Multipath transmission
 - Reflection
 - Diffraction
 - Different path lengths
 - Signal components arrive at different times

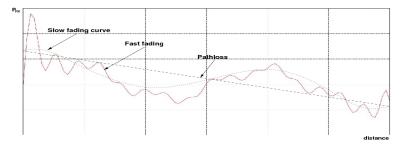
Interference


.∃ > . ∢

Superimposition of RF signals

- At a receiver, all incoming signals add up to one superimposed sum signal
- Constructive and destructive interference
- Normally: Heavily distorted sum signal

∃→ < ∃→</p>



- Channel conditions are dependent on time and location
- Independent channel conditions typically expected in a distance of $\frac{\lambda}{2}$ イロト イポト イヨト イヨト

3

3

Aspects of the mobile radio channel

Fading

- Signal quality fluctuating with location and time
- Slow fading
- Fast fading

Slow fading

- Result of environmental changes
- Temporary blocking of signal paths
- Changing reflection angles
- Movement in the environment
 - Trees
 - Cars
 - Opening/closing doors
- Amplitude changes can be modelled by log-normal distribution

톨▶ ▲ 콜▶ · 콜 · ∽ ९ ↔ Advanced Computer Networks

(日) (同) (三) (三)

Fast fading

- Signal components of multiple paths
- Cancellation of signal components
- Fading incursions expected in the distance of $\frac{\lambda}{2}$
- Channel quality changes drastically over short distances
- Example: Low radio reception of a car standing in front of a headlight is corrected by small movement
- Stochastic models are utilised to model the probability of fading incursions
 - Rice
 - Rayleigh

・ 同 ト ・ ヨ ト ・ ヨ ト

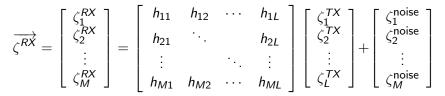
idio Concl

Aspects of the mobile radio channel

Received signal is defined by the transmitted signal and the applied modifications through the channel(Unique for each link!)

$$r(t) \cdot = s(t) \cdot h(t)$$

Introduction

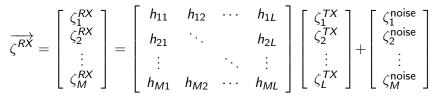

o Conclu

Aspects of the mobile radio channel

Received signal is defined by the transmitted signal and the applied modifications through the channel(Unique for each link!)

 $r(t)\cdot = s(t)\cdot h(t)$

General multi-antenna caste:



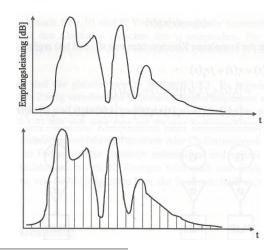
3

Received signal is defined by the transmitted signal and the applied modifications through the channel(Unique for each link!)

 $r(t)\cdot = s(t)\cdot h(t)$

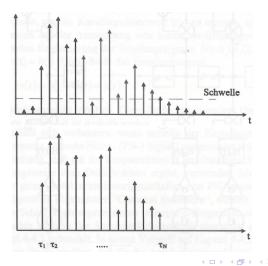
General multi-antenna caste:

Simulation of frequency selective channels


- Common approach: Estimate channel impulse response (CIR) with training bit-sequence
- Correct signal distortions with CIR

■ ◆ ■ ◆ ■ ・ ● ● へへ Advanced Computer Networks

イロン 不同 とくほう イヨン


Conclusion

Aspects of the mobile radio channel Simulation of frequency selective channels²

²David, Benkner, Digitale Mobilfunksysteme, Teubner, 1996

Aspects of the mobile radio channel Simulation of frequency selective channels

Advanced Computer Networks

- ∢ ≣ →

Channel estimation

Approximate h(t) in the time domain:

- Send very short impulses
 - Can be improved by using pseudo-noise sequence instead of single identical impulses
- Inverse of estimated CIR $\overline{h(t)^{-1}}$ correlated with received signal:

$$r(t) \cdot \overline{h(t)^{-1}} = s(t) \cdot h(t) \cdot \overline{h(t)^{-1}} \approx s(t)$$

3

A ►

Outline

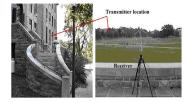
Introduction

Radio channel effects

Security from RF

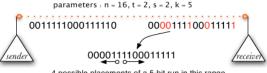
Security from noise

Security from audio


Conclusion

Secure communication based on deep fades in the SNR³

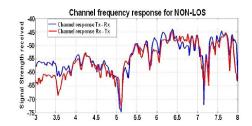
- Communication partners agree on a threshold value
- Both nodes transmit repeatedly and alternately
- Channel characteristics are transformed to bit sequence
 - Signal envelope below threshold in timeslot: 1, else 0
- No specialised hardware required
 - Only threshold detectors which are already present in transceivers



³Azimi-Sadjadi, Kiayias, Mercado, Yener, Robust Key Generation from Signal Envelopes in Wireless Networks, CCS, 2007

Secure communication based on deep fades in the SNR

- Key generation
 - Sender and receiver sample bit sequences
 - Sender transmits key verification information to receiver
 - Receiver decides on correct key by scanning through all possible error vectors

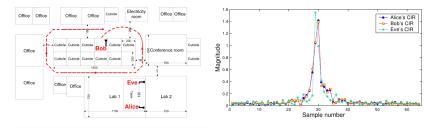

4 possible placements of a 5-bit run in this range

Advanced Computer Networks

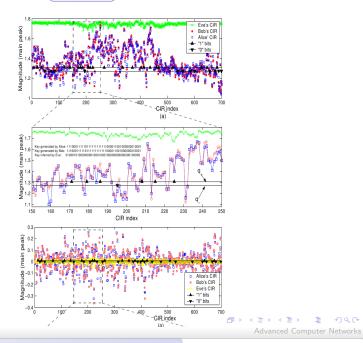
- 4 同 6 4 日 6 4 日 6

Secure communication based on deep fades in the SNR

- Discussion
 - Computationally cheap approach
 - 2 No special hardware required
 - Probably uneven distribution of 0 and 1 (Dependent on Channel characteristics and time slot)
 - 6 Key generation in the presence of noise not optimal


Advanced Computer Networks

∃→ < ∃→</p>


- The second sec

Secure communication based on the CIR^{4 5}

- Utilise Channel impulse response as secure secret
 - Utilise magnitude of CIR pain peak
 - Transformed to binary sequence via Threshold
 - Error correction method required in order to account for noise in the binary sequences

⁴Mathur, Trappe, Mandayam, Ye, Reznik, Radio-telepathy: Extracting a secret key from an unauthenticated wireless channel, MobiCom, 2008

Security from noise

Security from audio

Conclusion

Outline

Introduction

Radio channel effects

Security from RF

Security from noise

Security from audio

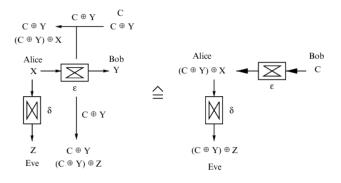
Conclusion

- ・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ クへぐ

Exploit noise for security among devices

- Utilise noise in a common communication channel
- Employ Fuzzy cryptography to mitigate noise for legitimate communication partners

3


Security from noise

Security from audio

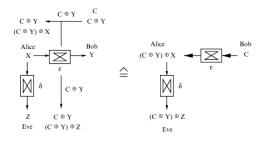
Conclusion

Fuzzy cryptography

Utilise noise to improve security

Advanced Computer Networks

<ロ> <回> <回> <回> < 回> < 回> < 三</p>

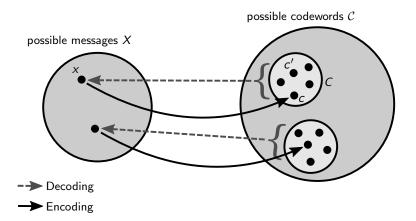

Security from noise

ecurity from audio

Conclusion

Fuzzy cryptography

Utilise noise to improve security


By inverting the direction of communication the noise in Eve's reception is increased above those in Alice's

Establishing of a secure key is possible over binary symmetric channel iff the noise in the reception of Eve's message is higher⁶

⁶Wyner, The wire-tap channel, Bell system Technical Journal, 54:1355-1387,1975 🗇 🕨 א 🚊 א א 🚊 א 👘 🛓 🔊 🔍

Radio channel effects

Utilisation of Fuzzy cryptography to mitigate errors in keys

Advanced Computer Networks

3

Fuzzy cryptography

Fuzzy Commitment

Traditional cryptographic systems rely on secret bit-strings.

When key contains errors (e.g. noise or mistake), decryption fails.

Rigid reliance on perfectly matching secret keys makes classical cryptographic systems less practicable in noisy systems.

Fuzzy commitment: cryptographic primitive to handle independent random corruptions of bits in a key.

Advanced Computer Networks

イロト イポト イヨト イヨト

Fuzzy cryptography

Fuzzy Commitment

Traditional cryptographic systems rely on secret bit-strings for secure management of data.

A cryptographic commitment scheme is a function

 $G: C \times X \to Y$

To commit a value $\kappa \in C$ a <u>witness</u> $x \in X$ is chosen uniformly at random and $y = G(\kappa, x)$ is computed.

A decommitment function takes y and a witness to obtain the original κ

 $G^{-1}: Y \times X \to C$

Advanced Computer Networks

3

Security from noise

Conclusion

Fuzzy cryptography

Fuzzy Commitment

A well defined commitment scheme shall have two basic properties.

Binding It is infeasible to de-commit y under a pair (κ', x') such that $\kappa \neq \kappa'$

Hiding Given y alone, it is infeasible to compute κ

Advanced Computer Networks

3

イロン 不同 とくほう イヨン

Security from noise

Fuzzy cryptography

Fuzzy Commitment

Fuzzy commitment is an encryption scheme that allows for the use of *approximate* witnesses

Given a commitment $y = G(\kappa, x)$, the system can recover κ from any witness x' that is close to but not necessarily equal to x.

Closeness in fuzzy commitment is measured by Hamming distance.

Advanced Computer Networks

(日) (同) (三) (三)

Fuzzy cryptography

Fuzzy Commitment

A fuzzy commitment scheme may be based on any (linear) error-correcting code

An error-correcting code consists of

Message space $M \subseteq F^a$ (F^i denotes all strings of length *i* from a finite set of symbols F) Codeword space $C \subseteq F^b$ with (b > a) Bijection $\theta : M \leftrightarrow C$ Decoding function $f : C' \rightarrow C \cup \bot$ (The symbol \bot denotes the failure of f) The function f maps an element in C' to its nearest codeword in C.

Advanced Computer Networks

イロト 不得 トイヨト イヨト 二日

Fuzzy cryptography

Fuzzy Commitment

Noise of physical function may be viewed as the difference c - c'

Decoding function f applied to recover original codeword c

This is successful if c' is close to c. In this case: c = f(c')

The minimum distance of the code is the smallest distance d = Ham(c - c') between any two codewords $c, c' \in C$

Typically, it is possible to correct at least $\frac{d}{2}$ errors in a codeword

'돌▶ ◀ 돌▶ · 툴 · ∽ ९ ↔ Advanced Computer Networks

3

Fuzzy cryptography

Fuzzy Commitment

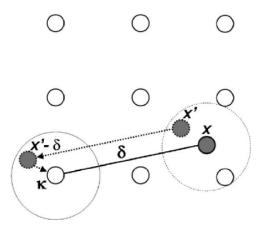
For fuzzy commitment, the secret key κ is chosen uniformly at random from the codeword space *C*. Then,

- An offset $\delta = x \kappa$ is computed
- A one-way, collision-resistant hash function is applied to obtain h(κ)

3
$$y = (\delta, h(\kappa))$$
 is made public

•
$$\kappa' = f(x' - \delta)$$
 is computed

Solution It is possible to de-commit y under a witness x' with Ham(x, x') < $\frac{d}{2}$


Once κ is recovered, its correctness may be verified by computing $z = h(\kappa)$

(Security from noise

Conclusion

Fuzzy cryptography

Fuzzy Commitment

<ロ> <四> <四> <三</p>

Security from RF Security from noise

(Security from audio

Security from audio

Conclusion

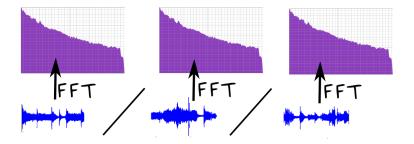
Example: Spontaneous audio-based device pairing

- ▲ ロ ト ▲ 国 ト ▲ 国 ト ト 国 - りんぐ

Security from audio

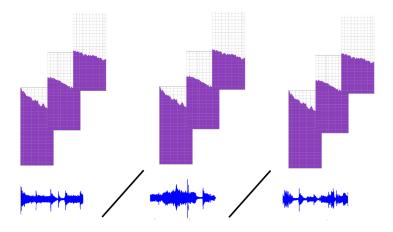
Conclusion

Example: Spontaneous audio-based device pairing


イロト イポト イヨト イヨト 3

Security from noise

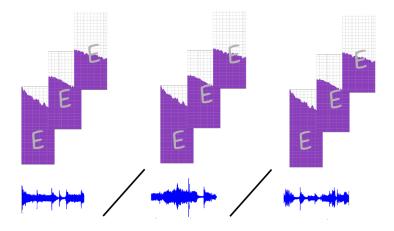
Security from audio


Conclusion

Example: Spontaneous audio-based device pairing

(Security from audio

Example: Spontaneous audio-based device pairing



イロト イポト イヨト イヨト

(Security from audio)

Conclusion

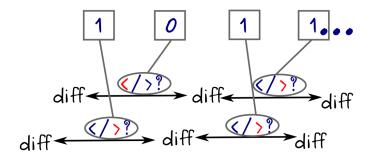
Example: Spontaneous audio-based device pairing

・ロト・日本・モート ヨー うへの

Security from noise

Security from audio

Conclusion

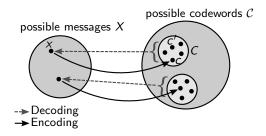

Example: Spontaneous audio-based device pairing

Ediff E diff **V**diff diff

3

イロト イボト イヨト イヨト

3


・ロト ・回ト ・ヨト ・ヨト

(日) (同) (三) (三)

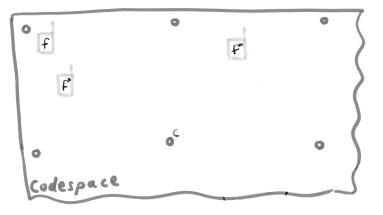
Encryption and decryption in the presence of noise

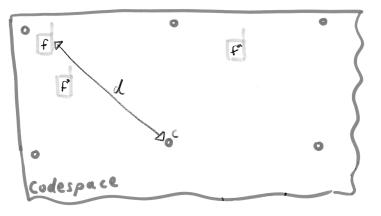
Fuzzy cryptography

- We can, however, utilise error correcting codes to account for errors in an input sequence
- The general idea is to utilise a function that maps from a feature space to another, key space

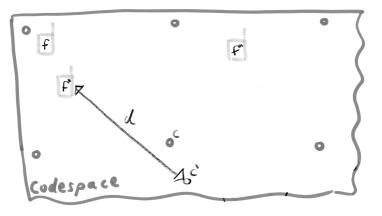
(日) (图) (문) (문) (문)

F 11017...0110

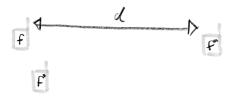


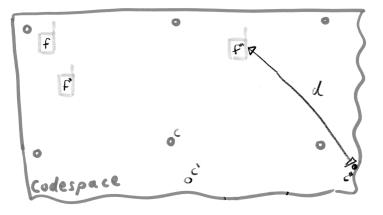

(Security from audio

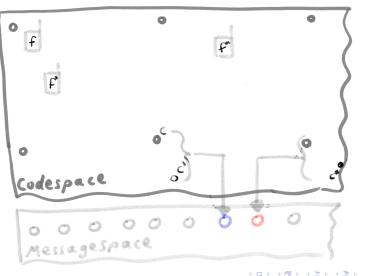
・ロト ・同ト ・ヨト ・ヨト 3

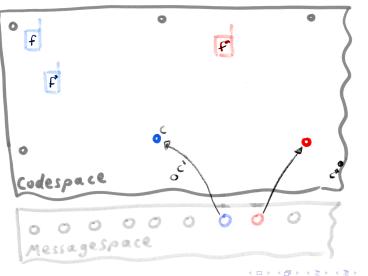

Security from RF Security from noise

(Security from audio








・ロト ・同ト ・ヨト ・ヨト 3

Questions?

Stephan Sigg stephan.sigg@cs.uni-goettingen.de

Literature

- C.M. Bishop: Pattern recognition and machine learning, Springer, 2007.
- P. Tulys, B. Skoric, T. Kevenaar: Security with Noisy Data On private biometrics, secure key storage and anti-counterfeiting, Springer, 2007.
- R.O. Duda, P.E. Hart, D.G. Stork: Pattern Classification, Wiley, 2001.

イロト イポト イヨト イヨト