
P2P-Networks

Advanced Computer Networks
Summer Semester 2012

Introduction to P2P Systems

o What?

o What is a P2P system?

o Why?

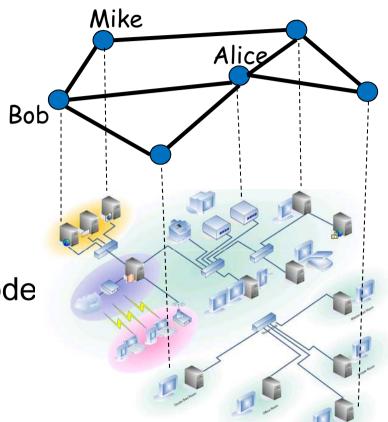
Why do we need P2P system?

o How?

o How well is the P2P system doing?

What is a P2P System?

 Peer-to-peer (abbreviated to P2P) refers to a computer network in which each computer in the network can act as a client or server for the other computers in the network, allowing shared access to files and peripherals without the need for a central server [Wiki]



- The sharing of computer resources by direct exchange, rather than requiring the intermediation of a centralized server. [1]
- Their ability to treat instability and variable connectivity as the norm, automatically adapting to failures in both network connections and computers, as well as to a transient population of nodes. [1]
- N-E-T O

Fault-tolerant, self-organizing

Features

- Decentralized:
 - No central component
- Role: "all peers are equal"
- Self-organized
 - Highly dynamic behavior of node
 - Free to come, free to go
 - Our Unreliable service provider:
- Overlay Network
 - A network built on the top of physical network
 - Nodes are connected by logical links
 - Flat system architecture

Features (Cont.)

- Large-scale resources
 - Heterogeneous
 - Millions of nodes
- Collaboration
 - Based on voluntary participation
 - Global reach
- Flexible, resilient to attacks, anonymous
- 0 ...

Please name some typical P2P systems.

What do you think about P2P applications?

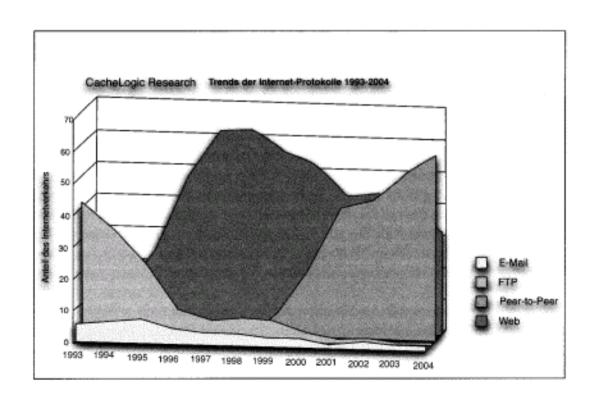
Why?

Centralized -> decentralized

Client to Server -> Peer to Peer

o Benefits?

Increasing Requirement of Resource Sharing


Text, email: 100 KB

o Picture: 1MB

Music: 10MB

Movie: 1GB

HD Video: 10GB+

Developing of Network Nandwidth

 Maximum bandwidth of common Internet access technologies [Wiki]

 Current network bandwidth cannot satisfy user demand

 It needs a more efficient way to share resource

56 kbit/s	Modem / Dialup
1.5 Mbit/s	ADSL Lite
1.544 Mbit/s	T1/DS1
10 Mbit/s	Ethernet
11 Mbit/s	Wireless 802.11b
44.736 Mbit/s	T3/DS3
54 Mbit/s	Wireless 802.11g
100 Mbit/s	Fast Ethernet
155 Mbit/s	OC3
600 Mbit/s	Wireless 802.11n
622 Mbit/s	0012
1 Gbit/s	Gigabit Ethernet
2.5 Gbit/s	OC48
9.6 Gbit/s	OC192
10 Gbit/s	10 Gigabit Ethernet
100 Gbit/s	100 Gigabit Ethernet

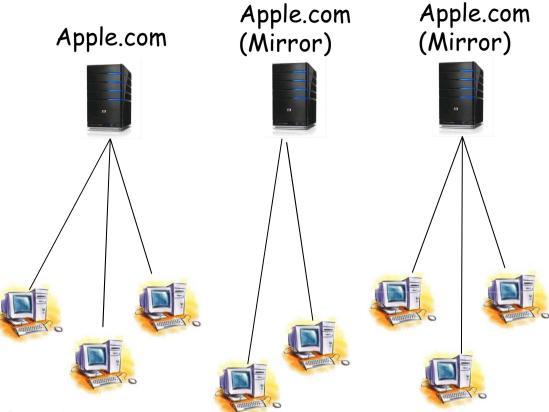
Client/Server

 The client arrives and requests a service at any given point in time

The server is dedicated to the service and responds to the client

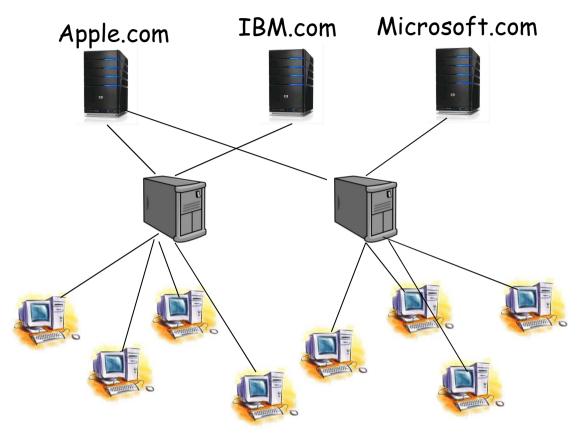
Apple.com

Problems


- Hot spot-uneven workload
- Bottleneck: bandwidth, CPU, ...
- Single point of failure
- Scalability
- Maintenance

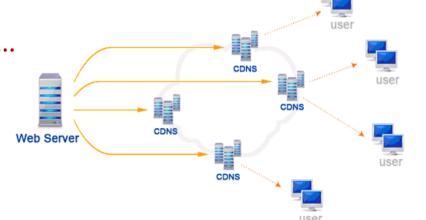
Replication

Replication



Problems

- Hot spot-uneven workload
- Bottleneck: bandwidth, CPU, ...
- Single point of failure
- Scalability
- Maintenance


Proxy, CDN

Problems

- Hot spot uneven workload
- Bottleneck: bandwidth, CPU, ...
- Single point of failure
- Scalability
- Maintenance

P2P: Advantages

- Changing the way network bandwidth usage
- Easy to deploy, easy to use
- Dynamic for joining and leaving
- Distributed resource sharing
 - Files, data, storage, computation, ...
 - Provide something useful and free
 - Anyone can contribute
- Fault tolerant
- Service ability: large scale
- Service of quality: the more user, the better

How?

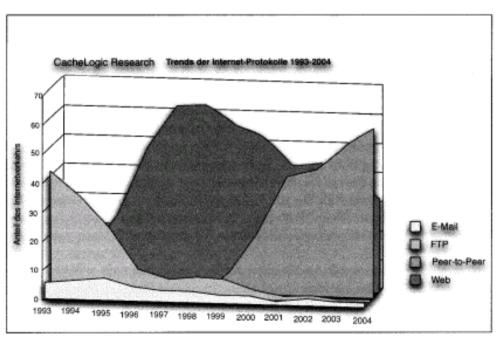
o How well is P2P network doing?

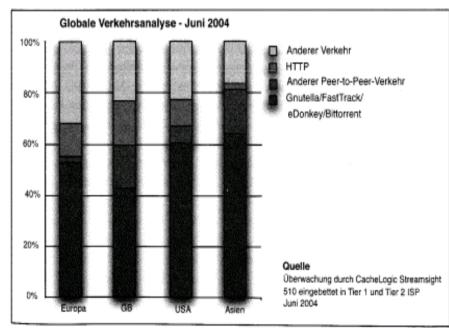
o State of art?

P2P Applications and Systems

- File sharing
 - Napster, Gnutella, BitTorrent
 - Edonkey, Emule, ...
- Multimedia streaming
 - P2P TV: PeerCast, PPlive, PPStream, TVUnetworks, TvAnts, Zattoo,
 - P2P based VOD systems
- Communication
 - 。Skype, ...
 - 。 MSN, ...
- Computation

SETI@home: Search for Extra-Terrestrial Intelligence


Current State of P2P System

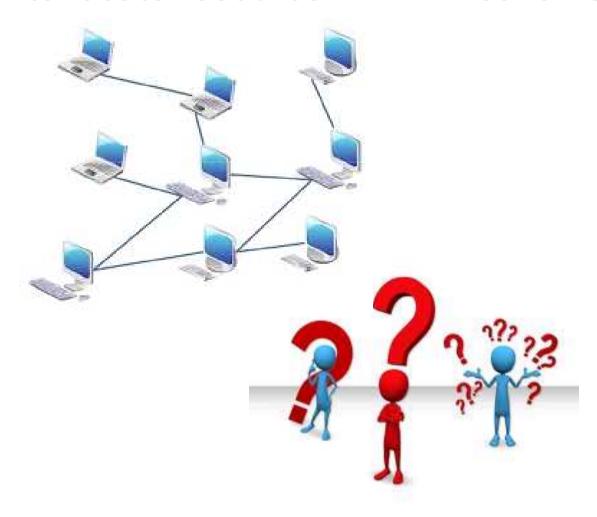

- P2P applications are popular over the world
- P2P networks are mainly used for resource sharing
 - Music, videos, software, ...
 - Some are illegal copyrighted materials
- New emerging applications
 - Online media streaming, P2P TV
 - P2P telephone system
 - Software installation and update
 - Decentralized social network applications

P2P Changes Network Traffic

 P2P applications accounts over 70% of network traffic

Typical Research Topics

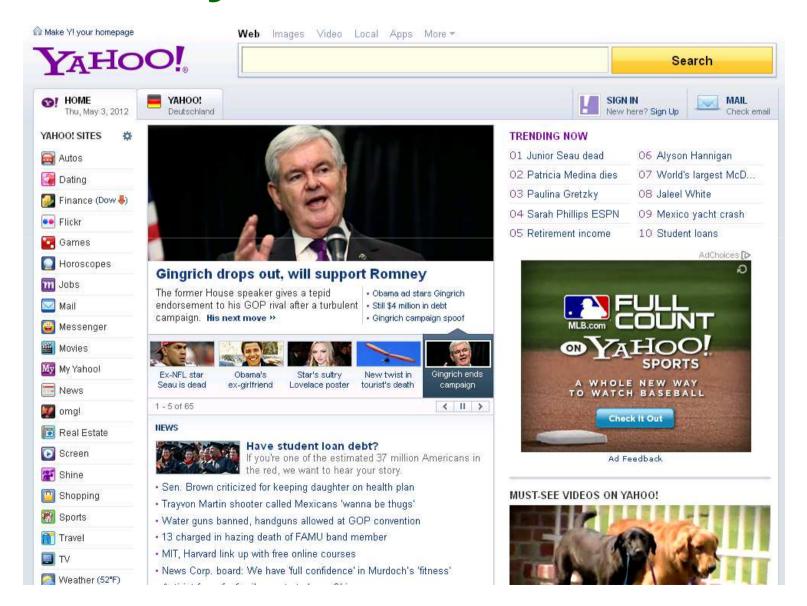
- Structure
 - How to search information
 - Unstructured P2P
 - Structured P2P
- Security and privacy
 - o How to protect system security and user privacy?
 - Security in P2P Networks, Anonymity
- Legal issues



Unstructured P2P Networks

Search in P2P Networks

o How to locate resource in P2P networks?


DNS- Domain Name System

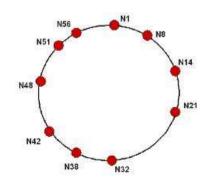
- A hierarchical distributed naming system for computers, services, or any resource connected to the Internet or a private network[Wiki]
- Translates queries for domain names into IP addresses for the purpose of locating computer services and devices worldwide
- Distributed database organized in hierarchy structure

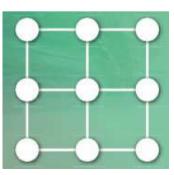
google bbc

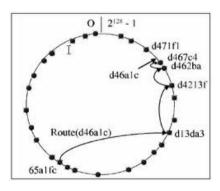
Directory

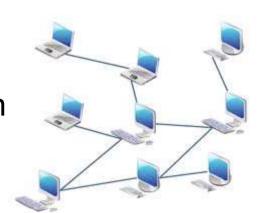
Information Retrieval System

Keyword-based




Google.de offered in: Deutsch




Search in P2P Networks?

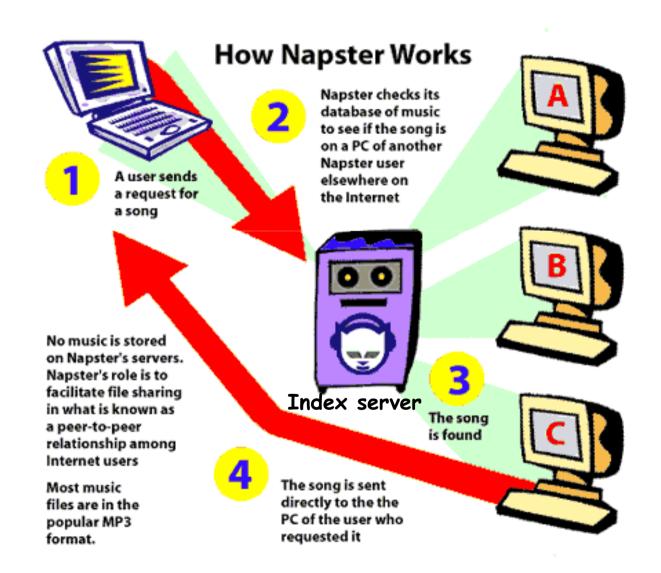
- Unstructured P2P
 - Highly flexible, dynamic, easy to maintain
 - Hard to find information
- Structured P2P
 - Hard to maintain its structure
 - Easy to find information

Unstructured P2P Networks

- Napster
- o Gnutella
- BitTorrent

Napster

- The first P2P file sharing applications (1999)
- Mostly sharing MP3 files
- Grew in popularity at 13.6 million users in 2001
- Was shut down in 2001 due to lawsuits
- In 2003 it came back as an online music system (not a P2P anymore)



Search in Napster

- Searching information based on a global index server
 - Step 1: registration
 - User ID, IP address
 - A list of files to be shared
 - Step 2: searching
 - Sending queries containing keywords to the index server
 - Search results were a list of relevant filenames and descriptions
 - Step 3: file download
 - According to the searching results, the node connect to the target peer to fetch the file.
 - Without server involved

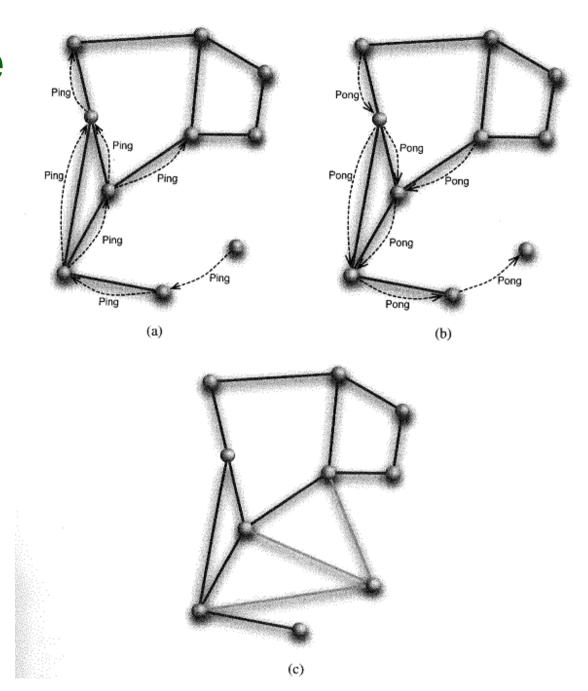
An Example

Napster: Pros and Cons

- Strengths
 - Consistent view of the network
 - The central server knows everything
 - Easy to manage
 - Fast and efficient searching
- Weaknesses
 - Single point of failure
 - Bandwidth and CPU bottleneck
 - Hard to scale
 - Central server need to be powerful

Gnutella 0.4

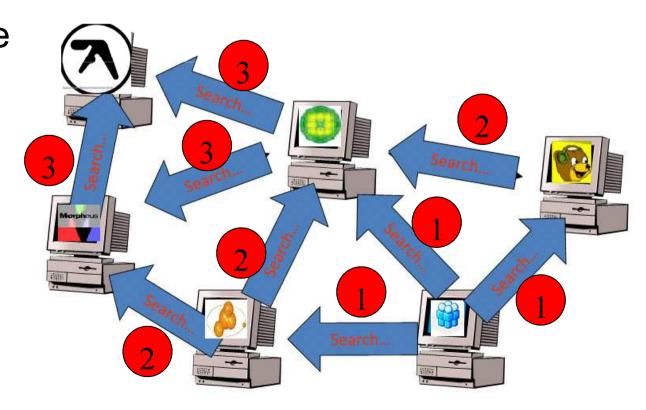
- Answer to some of Napster's weaknesses
- Pure P2P, fully distributed
- It is a protocol, but cannot be used in a big network
- Currently Gnutella 0.4 is not in use anymore
- Based on overlay network
- Operations
 - Join
 - Search
 - Download: like Napster, occurs directly between peers



Join

- When a new peer enter the network, it probes the overlay by broadcasting ping and a TTL value
- A peer receiving a ping responds with a pong, together with its IP address
- Pongs returned along reverse path
- When a pong is received, new links are added between peers

An Example



Search

- Queries are flooded to the whole network
- Peers with the desired files will answer the query

An example

Gnutella: Pros and Cons

Strengths

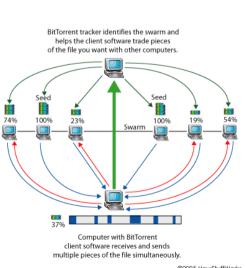
- Fully distributed
- Highly fault-tolerant, no single point failure
- Easy to deploy and implement

Weaknesses

- Flooding is highly waist of bandwidth and other resources (flooding storm)
 - Solution: limit query radius
- Maintenance is expensive (ping/pong)

BitTorrent

- A new popular approach to sharing large files
 - It accounts for 30-50% of all Internet traffic
- Originally used for distributing legal content
 - Linux distributions, software updates
 - Official movies
 - o Games, ...
- Goal:
 - Quickly and reliably replicate one file to a large number of clients
- Call it "P2P content distribution"


Basic Idea

Chucking:

- Files split into smaller pieces or chunks
- Chunks can be downloaded in parallel
- Downloading order does not matter

Swarming

- Clients join a crowd of peers uploading and downloading the same content
- Nodes request chucks from neighbors and download content in parallel
- Use the web server to publish content
- Use a central unit to locate resource

Basic Components

- Web server: for content publication
- Tracker: a special central server for running the content distribution system
 - Tracking active peers
 - Mapping from file name to peers
- Peer
 - Seed: a peer with a complete copy of the file
 - Leecher: peer still downloading the file
- ".torrent" file: metadata and description of the file
 - The number of chunks
 - The tracker's IP

Tracker: 127.0.0.1

Chunks: 42

Chunk 1: 12345678 Chunk 2: 90ABCDEF

Operation

Sharing a file:

- (1) Seed generates a ".torrent" file from the file
- (2) Upload the ".torrent" file to some public web server or sending it to friends by email

Searching a file:

- No dedicate search component
- User can search ".torrent" file from web server

Downloading a file:

- o (1) Download the ".torrent" file
- (2) Connect to the tracker to locate the file
- (3) Choose some fast peers to download chunks in parallel

Tit-for-Tat Policy and Chunk Selection

- Tit-for-Tat policy
 - The more you give, the more you get
 - A peer serves peers that serve it
 - Encourages cooperation, discourage free-riding
- Chunk selection
 - Peers uses rarest first policy when downloading chunks
 - Having a rare chunk makes peer attractive to others
 - The goal is to maximize availability of each chunk

BitTorrent: Pros and Cons

Strengths

- Works well for "hot content", very fast and resilient
- Proficient in utilizing partially downloaded files
- Discourages "free-riding"
- Efficient for distributing large files to a large number of clients

Weaknesses

- Assume all interested peers active at same time
- Tracker could be single point of failure
- Vulnerable to attack
- Lack of search feature

Next Week

Structured P2P networks

References

- [1] Stephanos Androutsellis-Theotokis and Diomidis Spinellis. A survey of peer-to-peer content distribution technologies. ACM Comput. Surv. 36(4), 335-371. 2004.
- [2] Hari Balakrishnan, M. Frans Kaashoek, David Karger, Robert Morris, and Ion Stoica. Looking up data in p2p systems. Comm. ACM 46,2(Feb.), 43–48. 2003.
- [3] Clip2: The Gnutella protocol specification v0.4, 2001
- [4] Pouwelse, Johan; et al. "The Bittorrent P2P File-Sharing System: Measurements and Analysis". Peer-to-Peer Systems IV. Berlin: Springer. pp. 205–216. 2005.
- [5] Erik Nygren, Ramesh K. Sitaraman, and Jennifer Sun, The Akamai Network: A Platform for High-Performance Internet Applications, ACM SIGOPS Operating Systems Review, Vol. 44, No.3, July 2010.

