
Introduction

Advanced Computer Networks Summer Semester 2012

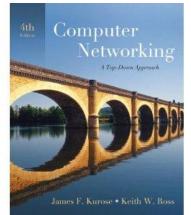
Organizational Information

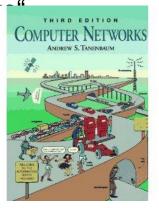
- <u>https://wiki.net.informatik.uni-</u> goettingen.de/wiki/Advanced_Computer_Networks_(Summer_2012)
- Slides are available online
- Course is held in English
- 6 ECTS credits (old + new PO)
- o M.Inf.1222.Mp, M.Inf.1223.Mp, M.Inf.221.3C1

Organizational Information

- Exam: 2012-07-19
- Additional requirement to pass the course is to give a 20-30min talk on a topic provided
 - Topics are typically research papers covering material discussed throughout the lecture
 - Presentations: 2012-06-21
- Check the FlexNow registration deadlines

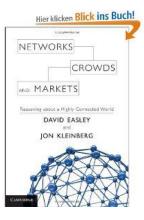
Course Overview

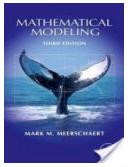

- This course covers (currently):
 - P2P Networks
 - Distributed Hash Tables
 - CDN/CCN
 - Cloud Computing
 - o Security
 - Social Networks
 - Mathematical Models
- Please note that the slides are subject to change.
 Before the exam, please check again the wiki for updated slides and other info!

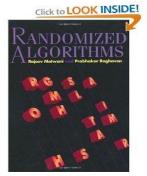


Course Materials - Basics

- J. Kurose and K. Ross, "Computer Networking: A Top-Down Approach Featuring the Internet" (some slides are based on the book)
- A. S. Tanenbaum, "Computer Netwo"
- C. Schindelhauer, Peer-to-Peer Netzwerke (german)
- Further materials are released on the wiki



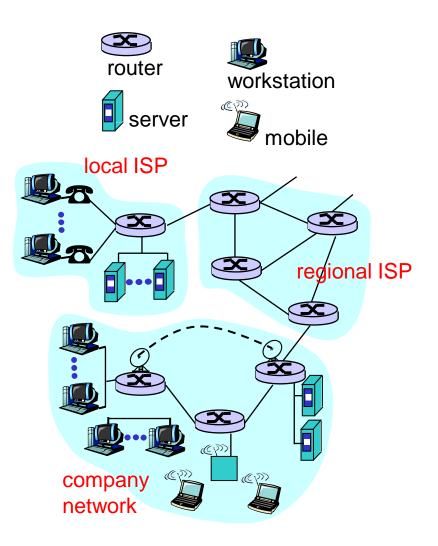



Course Materials - Advanced

• References

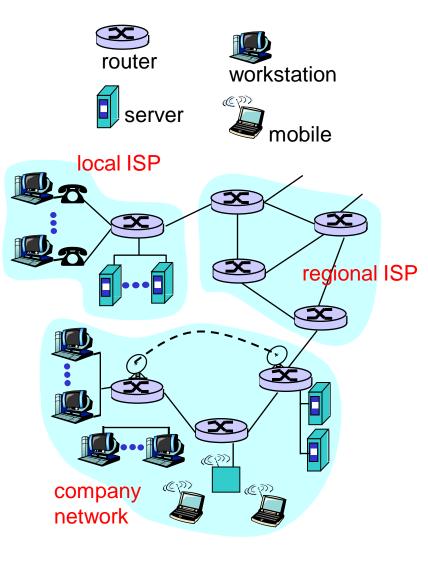
- David Easley and Jon Kleinberg, Networks, Crowds, and Markets: Reasoning About a Highly Connected World, Cambridge University Press, 2010.
- Mark M. Meerschaert, Mathematical Modeling (3th Edition), Elsevier Academic Press, 2007.
- Rajeev Motwani and Prabhakar Raghavan, Randomized Algorithms, Cambridge University Press, 1995

Recap of Basics


- The following slides repeat fundamentals for advanced networks:
 - Protocols / Layering
 - The hierarchical structure of the Internet
 - Addressing on the different layers
 - Routing and IP subnet aggregation
 - Layer 4 services such as reliable data transfer
- If something is new for you, please review the Computer Networks slides at: <u>https://wiki.net.informatik.uni-</u> <u>goettingen.de/wiki/Computer_Networks_(Winter_201_1/2012)</u>

What is the Internet?

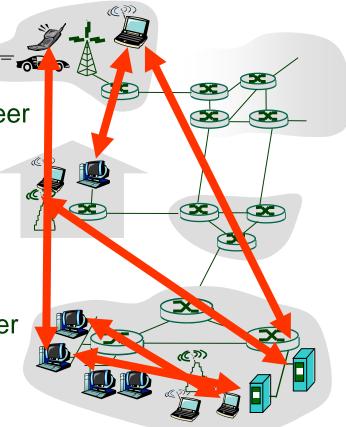
What is the Internet?


- millions of connected computing devices: hosts, end-systems
 - PCs, workstations, servers
 - PDAs, phones, toasters
 - o running network apps
- o communication links
 - fiber, copper, coax, radio, satellite
 - transmission rate = bandwidth
- *routers:* forward packets (chunks of data)

What is the Internet?

- protocols define format, order of msgs sent and received among network entities, and actions taken on msg transmission, receipt
- Internet: "network of networks"
 - o loosely hierarchical
 - public Internet versus private intranet
- o Internet standards
 - RFC: Request for Comments
 - IETF: Internet Engineering Task Force

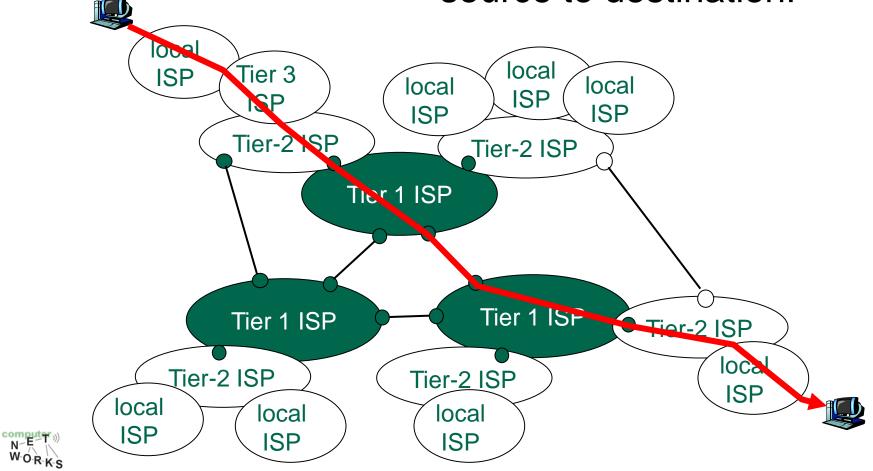
What is the Internet?


- The network is typically divided into the network core and the network edge
 - $_{\circ}$ Edge: end systems, access networks, links
 - Core: circuit switching, packet switching, network structure, routers etc.
- Users access the Internet from the edge: email, http web access, applications, social networks

At the edge

client/server model

- client host requests, receives service from always-on peer-peer server
- e.g. web browser/server; email client/server
- Is that optimal for large scale?
- o peer-peer model: client/server
 - minimal (or no) use of dedicated servers
 - e.g. Skype, BitTorrent


Packet Switching Implications

- End data stream is divided into "packets"
- Multiple users share network resources
 - Sequence of packets does not have fixed pattern, this effect is called statistical multiplexing
 - Each packet uses full bandwidth
 - Resources are used as needed
- No dedicated resource allocation!
- Demand may exceed resources:
 - Congestion, delay, loss

Hierachical Structure

 A packet traverses multiple networks from source to destination!

Impact of Hierarchy

- Main goal accomplished:
 - Efficient, works!
- o But:
 - Providers have to buy resources from higher tiers or exchange directly on low tier level (peering)
 - Transferring data through external network is costly
 - Many modern technologies make it relevant HOW a packet traverses through the net
 - File sharing consumes large of resources, P2P is not business model of providers! Providers have an incentive to control P2P flows!
 - Efficient content delivery of large amounts of data (IP-Television, Video etc...)

Protocol Layering

- Networks are complex and consist of many pieces: hosts, routers, links, applications, protocols et cetera...
- Idea: Simplify by using layers to distinguish organizational parts of networking.
- Inspired by other, real-world "layered" processes

Internet Protocol Stack

- Application: network apps
 - FTP, SMTP, HTTP
- Transport: process-to-process data transfer
 - TCP, UDP
- Network: routing of datagrams from source to destination
 - IP, other routing protocols
- Link: data transfer between neighboring network elements
 - PPP, Ethernet
- Physical: bits "on the wire"

application
transport
network
link
physical

ISO/OSI Reference Model

- Presentation: allow applications to interpret meaning of data, e.g., encryption, compression, machine-specific conventions
- Session: synchronization, checkpointing, recovery of data exchange
- o Internet stack "missing" these layers!
 - these services, *if needed*, must be implemented in application
 - $_{\circ}$ needed?

application
presentation
session
transport
network
link
physical

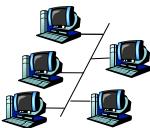
Layering Challenges

- Many modern networks are application level networks
 - Social Networks such as Facebook, Twitter etc.
- P2P networks are a mixture of different layers
 - Sometimes implementing application level data lookup, packet (chunck) forwarding etc.
- Large scale applications demand optimizations on various levels:
 - Content delivery of large data streams!

Layer 2 - Principles

- Switch processes up to layer 2
- Principles:
 - Reliable transmission of data over a link
 - Error detection, correction
 - Sharing a broadcast channel: multiple access
 - Link layer addressing
- Layer 2 packet is referred to as frame

data-link layer has responsibility of transferring datagram from one node to adjacent node over a link


Layer 2 – Error Detection

- Implemented in layer 2 adaptors (network interface cards etc.)
- Idea: Combine data payload with a Checksum to detect transmission errors
- Implemented using Cyclic Redundancy Checksum
- Typically frame is dropped if error occured. Retransmit (reliability) has to be implemented at other layer

Layer 2 – Multiple Access Prot.

- In general two types of "links":
 - Point-to-Point (e.g., PPP for dial-up, link between Ethernet switch and host)
 - Broadcast medium
 - Shared wire in old Ethernet
 - 802.11 wireless LAN

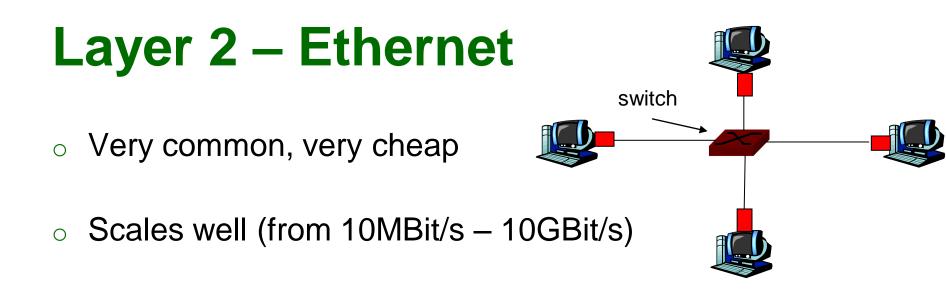
shared wire (e.g., cabled Ethernet)

In broadcast:

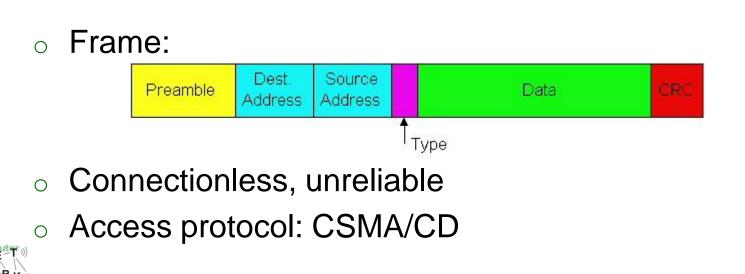
- Distributed algorithms determine how nodes share channel and transmit
- No "out-of-band" channel for coordination

Layer 2 – Addressing

- 48 BIT MAC address
 - Burned in NIC Rom (sometimes software settable)
 - Should be unique (vendors have MAC-ranges)
 - No hierachical or aggregatable information! Also called flat address.
- IP to MAC address resolved using the Address Resolution Protocol (ARP)
 - Idea: Broadcast query: "Who has IP ...?". Host with queried IP replies unicast "IP ... is at MAC ...".



Layer 2 – Forwarding


- Solved by switches
 - Learns in a plug and play mode, no configuration necessary!
 - Question: On what switch-port to forward incoming dataframe
 - If destination MAC is known (in forwarding table) and associated to a port, use that port
 - If destination MAC is unknown, broadcast the dataframe on all ports
 - If a packet with an unknown source MAC is observed, create an entry in the forwarding table that binds port to MAC

• Only works in the broadcast domain! No routing!

Star topology used (no collisions!)

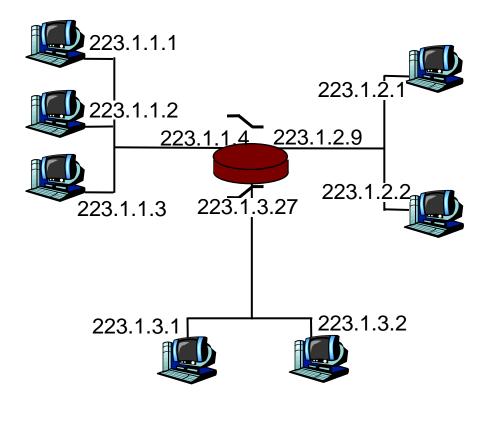
Layer 3 – Principles

- Internet Protocol dominant networking technology
- Network layer transports datagrams from sending to receiving host
- Protocol runs in every host and router (not in switches!)

Hourglass architecture

email WWW phone
SMTP HTTP RTP
TCP UDP
ethernet PPP
CSMA async sonet
copper fiber radio

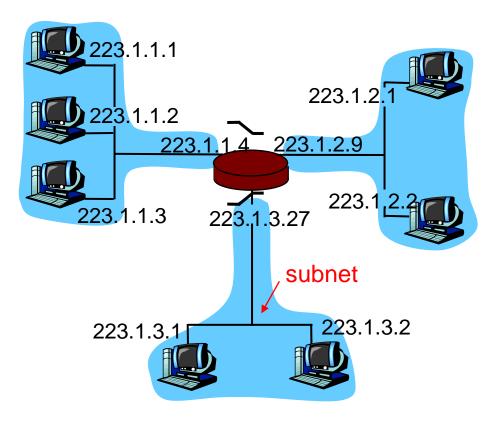
© Jonathan L. Zittrain (http://yupnet.org/zittrain/archives/13)


Layer 3 – Routing

- Routing: determine the route taken by packts from source to destination
 - Analogy: planning a road trip from one city to another
- Functions of a router:
 - Forward datagram from incoming to outgoing link
 - Select outgoing link by running a routing algorithm
 - Examples: RIP, OSPF, BGP
- Routers buffer packets (buffer size rule of thumb: Round-Trip-Time times link capacity
 - Buffering source of delay, overflowing buffer causes loss

Layer 3 – Addressing

- IP address: 32 bit identifier for host, router interface
- Interface: connection
 between host/router
 and physical link
 - Routers typically have multiple interfaces
 - Hosts typically have one interface
 - IP address associated with each interface

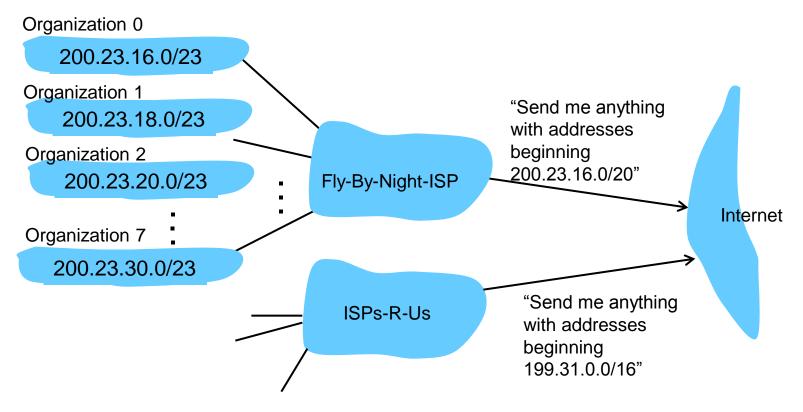


 $223.1.1.1 = \underbrace{11011111}_{223} \underbrace{0000001}_{0000001} \underbrace{0000001}_{0000001}$

Layer 3 – Subnets

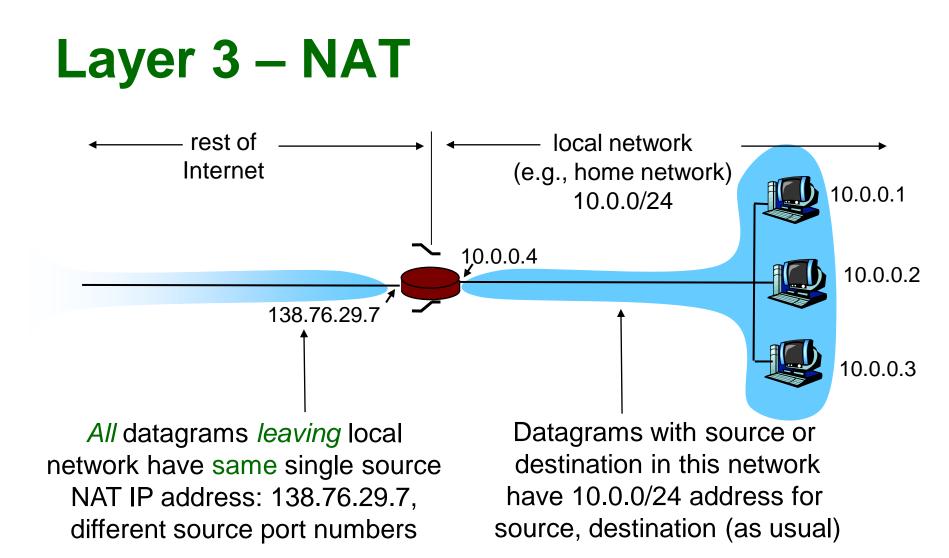
- IP address not flat
- Hierachical structure of "subnets"
- Inside a subnet:
 - All device interfaces share part of IP address
 - Devices can reach each other without intervening a router

network consisting of 3 subnets


Layer 3 – How to get an IP?

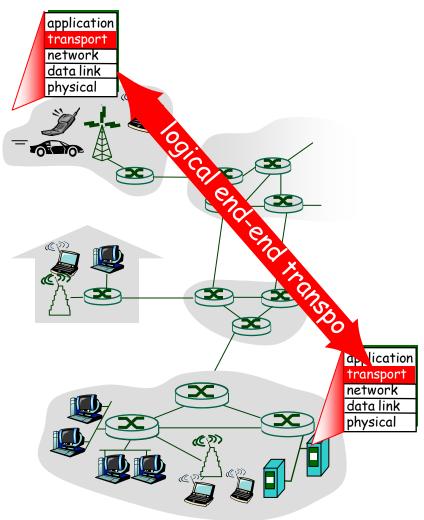
- MAC address was set by vendor
- IP needs to be obtained from ISP
 - Either in a fixed configuration
 - Or using the Dynamic Host Configuration Protocol (DHCP) (server offers service and hosts request IPs)
- How does the ISP get address space?
 - Allocated by higher Tier! (remember the hierachy)
 - Highest assignment done by Internet Assigned Numbers Authority (IANA) via ICANN in the US

Layer 3 – Aggregation


Hierachical addresses allow to aggregate some prefixes:

Layer 3 – NAT

- Network address translation (NAT) allows local network to have more users than assigned IP addresses!
 - Use one IP address for all devices
 - Addresses inside the network can change without need to notify the outside world
 - The ISP may change without changes necessary inside the network
 - Devices inside the local network are not explicitly addressable by the outside world!
 - Security plus but makes connections more difficult!


Layer 3 – NAT Challenges

- NAT violates end-to-end argument
- NAT traversal hard to solve for certain applications, for example P2P
- Address shortage should instead be solved by IPv6
- P2P Networks require to directly connect the destination host! How can this be solved?

Layer 4 – Principles

- Provide logical communication between app processes running on different hosts
- Relies on and enhances network layer services
- Analogy: Network = postal service, Transport = secretaries at sender and receiver

Layer 4 – UDP and TCP

- UDP provides unreliable, unordered delivery
 - Conceptually minimal transport layer protocol with "besteffort" IP
- TCP provides
 - Reliable data transfer
 - In-order delivery
 - Congestion control
 - Flow control
 - Connection setup
- Both protocols do not guarantee certain delays or bandwidths

Layer 4 – UDP and TCP

- UDP is minimalistic, therefore
 - Used in time-critical applications (Voice over IP)
 - Used when loss or out-of-order delivery is not critical
 - When the concept of connection is not of high relevance
- TCP ensures reliable data transfer:
 - Used when correctness is important
 - Typically used in all long-term non voice/video connections such as file transfers

Layer 4 – Addressing

- TCP socket is identified by 4-tuple:
 - Source IP address
 - Source port number
 - Destination IP address
 - Destination port number
- This allows multiple apps to communicate simulataniously with same source and destination host but, for example, different source port

Layer 4 – Data Transfer

- Reliable data transfer (TCP only) is ensured by
 - Maintaining state for each packet or group of packets (timeout timers)
 - $_{\circ}$ Resend upon loss
 - Loss is inferred by missing Acknowledgments
 - Only send new packets if previous ones got acked
- Speeding things up: Pipelining
 - Idea: Maintain a large group of packets "on the fly" using a window. Examples: Go-back-N, Selective Repeat

Layer 4 – TCP Properties

- Point-to-Point one sender, one receiver
- Reliable, in-order delivery
- Pipelined TCP congestion and flow control sets window sizes
- Send & receive buffers
- Full-duplex data transfer
- Connection oriented
- Flow-Control Sender prevents to overwhelm receiver

Application Layer

- Applications and application layer protocols:
 - HTTP/HTTPs for Web-Access
 - SMTP for e-mail
 - FTP/SFTP for data transfer
 - Many more...
- Challenge:
 - Utilize social information, peer-to-peer services, intelligent data storage and services (cloud) etc. to optimize content delivery!

Different kinds of networks

- Content Distribution/Delivery Networks
 - Traditional client/server architecture
 - Centralized using multiple data centers
 - Utilizing server replication to enhance reliability
 - Big issues: load balancing, bandwidth allocation
- Idea: use P2P to decentralize network traffic

Peer-to-Peer Networks

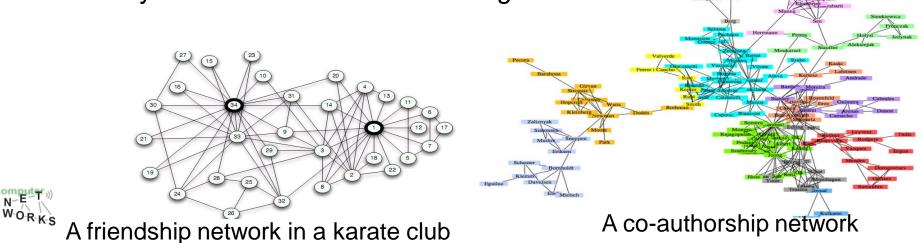
- Totally decentralized
- Self organized
- Every peer acts as a server and client
- Distributed algorithms
- How to find and retrieve data in the P2P network?
 Distributed Hash Tables!
- How to ensure high service quality?
 - Security

Cloud Computing

- Many networks composed of computationally weak clients
 - Smartphones, low energy devices
- Idea: Outsource all heavy computation to a centralized, powerful resource
 - Cloud computing
 - Again centralized infrastructure!
- Different from CDN as it provides not only delivery of content:
 - Also can provide computational services
 - Infrastructure services
 - Platform services
 - Software as a service

Networks in General

- Motivation: What can we learn from IP networking that can be used in different fields for good?
- Many classical networks known:
 - Street network
 - Railroad network
 - $_{\circ}$ Power grid
- But also networks that only recently found their technical representation:
 - Social networks


Social Networks Preview

Social Network

 A network made up by a set of individuals interconnecting with each other basing on social relationships (such as friendships, partnerships, etc.)

Characteristics

- Virtual: it is not physically exists
- Complex: it consists of a large scale number of nodes
- Grouping: it forms communities due to different interests
- Dynamic: it's structure is evolving over time

Social Networks Preview

- Structure: concepts and principles
- Power law distribution in node degree
- Cascading behavior in social networks
- The Small-World phenomenon
- Epidemics: disease and information transmission in social networks

Outlook

- In the next lectures:
 - Peer to Peer From Napster to BitTorrent
 - Efficient lookup and data localization with distributed hash tables
 - Efficient content delivery with content centric networking...

