
Machine Learning and Pervasive Computing

Stephan Sigg

Georg-August-University Goettingen, Computer Networks

03.06.2015

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Overview and Structure
13.04.2015 Organisation
13.04.2015 Introduction
20.04.2015 Rule-based learning
27.04.2015 Decision Trees
04.05.2015 A simple Supervised learning algorithm
11.05.2015 –
18.05.2015 Excursion: Avoiding local optima with random search
25.05.2015 –
01.06.2015 High dimensional data
08.06.2015 Artificial Neural Networks
15.06.2015 k-Nearest Neighbour methods
22.06.2015 Probabilistic models
29.06.2015 Topic models
06.07.2015 Unsupervised learning
13.07.2015 Anomaly detection, Online learning, Recom. systems

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Outline

Introduction

Perceptron algorithm

Neural networks
Introduction
Definition
Classification
Training Neural Networks
Example: Backpropagation learning

Gradient calculation via backpropagation

Neural Networks for dimensionality reduction

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Motivation

Why yet another classification algorithm ?

Regression Complex classification requires an
enormous number of features

w0 + w1x1 + w2x2 + w3x1x2 +

w4x
2
1x2 + w5x

3
1x2 + w6x1x

2
2 + . . .

SVM Finding of optimal kernel yet unsolved
problem

Artificial Neural Networks are capable
of implicitly learning appropriate
features also for complex non-linear
decision boundaries

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Motivation

Why yet another classification algorithm ?

Regression Complex classification requires an
enormous number of features

w0 + w1x1 + w2x2 + w3x1x2 +

w4x
2
1x2 + w5x

3
1x2 + w6x1x

2
2 + . . .

SVM Finding of optimal kernel yet unsolved
problem

Artificial Neural Networks are capable
of implicitly learning appropriate
features also for complex non-linear
decision boundaries

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Motivation

Why yet another classification algorithm ?

Regression Complex classification requires an
enormous number of features

w0 + w1x1 + w2x2 + w3x1x2 +

w4x
2
1x2 + w5x

3
1x2 + w6x1x

2
2 + . . .

SVM Finding of optimal kernel yet unsolved
problem

Artificial Neural Networks are capable
of implicitly learning appropriate
features also for complex non-linear
decision boundaries

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Motivation

Why yet another classification algorithm ?

Regression Complex classification requires an
enormous number of features

w0 + w1x1 + w2x2 + w3x1x2 +

w4x
2
1x2 + w5x

3
1x2 + w6x1x

2
2 + . . .

SVM Finding of optimal kernel yet unsolved
problem

Artificial Neural Networks are capable
of implicitly learning appropriate
features also for complex non-linear
decision boundaries

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Outline

Introduction

Perceptron algorithm

Neural networks
Introduction
Definition
Classification
Training Neural Networks
Example: Backpropagation learning

Gradient calculation via backpropagation

Neural Networks for dimensionality reduction

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

The perceptron algorithm

1962 Frank Rosenblatt introduces the linear discriminant preceptron
algorithm

Two-class model (t ∈ {−1, 1}) in which the input vector x is
first nonlinearly transformed to the feature vector φ(x):

y(x) = f (wTφ(x))

nonlinear activation function defined as a step-function:

f (a) =

{
+1, a ≥ 0
−1, a < 0.

φ(x) typically includes a BIAS-component φ0(x) = 1

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

The perceptron algorithm

1962 Frank Rosenblatt introduces the linear discriminant preceptron
algorithm

Two-class model (t ∈ {−1, 1}) in which the input vector x is
first nonlinearly transformed to the feature vector φ(x):

y(x) = f (wTφ(x))

nonlinear activation function defined as a step-function:

f (a) =

{
+1, a ≥ 0
−1, a < 0.

φ(x) typically includes a BIAS-component φ0(x) = 1

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

The perceptron algorithm

1962 Frank Rosenblatt introduces the linear discriminant preceptron
algorithm

Two-class model (t ∈ {−1, 1}) in which the input vector x is
first nonlinearly transformed to the feature vector φ(x):

y(x) = f (wTφ(x))

nonlinear activation function defined as a step-function:

f (a) =

{
+1, a ≥ 0
−1, a < 0.

φ(x) typically includes a BIAS-component φ0(x) = 1

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

The perceptron algorithm

1962 Frank Rosenblatt introduces the linear discriminant preceptron
algorithm

Two-class model (t ∈ {−1, 1}) in which the input vector x is
first nonlinearly transformed to the feature vector φ(x):

y(x) = f (wTφ(x))

nonlinear activation function defined as a step-function:

f (a) =

{
+1, a ≥ 0
−1, a < 0.

φ(x) typically includes a BIAS-component φ0(x) = 1

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

The perceptron algorithm

Training: We are looking for an Error function for a weight vector
−→w such that

xi ∈ C1 : −→w Tφ(xi) > 0
xi ∈ C2 : −→w Tφ(xi) < 0

Perceptron criterion

For the set M of all misclassified patterns, the perceptron criterion
is given as

EP(−→w) = −
∑
i∈M

−→w Tφ(−→w i)ti

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

The perceptron algorithm

Perceptron criterion

For the set M of all misclassified patterns, the perceptron criterion
is given as

EP(−→w) = −
∑
i∈M

−→w Tφ(−→w i)ti

The error function is piecewise linear:
linear in regions of −→w -space where pattern is misclassfied

0 in regions where it is classified correctly

Apply stochastic gradient descent to this error function:

−→w t+1 = −→w t − δ∇EP(−→w) = −→w t + δφ(−→wi)ti

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

The perceptron algorithm

Perceptron criterion

For the set M of all misclassified patterns, the perceptron criterion
is given as

EP(−→w) = −
∑
i∈M

−→w Tφ(−→w i)ti

The error function is piecewise linear:
linear in regions of −→w -space where pattern is misclassfied

0 in regions where it is classified correctly

Apply stochastic gradient descent to this error function:

−→w t+1 = −→w t − δ∇EP(−→w) = −→w t + δφ(−→wi)ti

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

The perceptron algorithm

Interpretation of the learning function

−→w t+1 = −→w t − δ∇EP(−→w) = −→w t + δφ(−→wi)ti

for each xi :

correct classification: weight vector remains unchanged
incorrect classification:

ClassC1 : add vector φ(−→wi)
ClassC2 : subtract vector φ(−→wi)

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

The perceptron algorithm

Interpretation of the learning function

−→w t+1 = −→w t − δ∇EP(−→w) = −→w t + δφ(−→wi)ti

for each xi :

correct classification: weight vector remains unchanged
incorrect classification:

ClassC1 : add vector φ(−→wi)
ClassC2 : subtract vector φ(−→wi)

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

The perceptron algorithm

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

The perceptron algorithm

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

The perceptron algorithm

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

The perceptron algorithm

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

The perceptron algorithm

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

The perceptron algorithm

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

The perceptron algorithm

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

The perceptron algorithm

Perceptron convergence theorem

Iff the training data is linearly separable, then the perceptron
learning algorithm will always find an exact solution in finite
number of steps.

→ Still, number of steps required might be very large

→ Until convergence, it is not possible to distinguish separable
problem from non-separable

→ For on-separable data sets the algorithm will never converge

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Outline

Introduction

Perceptron algorithm

Neural networks
Introduction
Definition
Classification
Training Neural Networks
Example: Backpropagation learning

Gradient calculation via backpropagation

Neural Networks for dimensionality reduction

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Neural networks

Learn mapping from input to
output vector

Representation by
edge-weighted graph

Distinction between

Input neurons

Output neurons

Hidden nodes

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Neural networks

LL-1L-2

. . .
a1

(L)

(L-1)

y

aD
(L)

w

1

y
2

11

(L
-1

)

w k1

(L
-1

)
w

D
 1

...
...

...
...

...
...

...

x1

xD

...

a1
(2)

aj
(2)

aD
(2)

21 . . .

2

L
1

L-
1

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Neural networks

Input neurons are only equipped with
outgoing edges Σ

wx

h(w,x)
w

w

2

3

x

x

2

3

1
1

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Neural networks
Single hidden layer sufficient to represent arbitrary
multi-dimensional functions

Well suited for noisy input data

Implicit clustering of input data possible

Complex to extend network (e.g. add new features)

LL-1L-2

. . .
a1

(L)

(L-1)

y

aD
(L)

w

1

y
2

11

(L
-1

)

w k1

(L
-1

)
w

D
 1

...
...

...
...

...
...

...

x1

xD

...

a1
(2)

aj
(2)

aD
(2)

21 . . .

2

L
1

L-
1

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Neural networks

Neural networks are also known as multilayer perceptrons

→ However, the model comprises multiple layers of logistic
regression models (with continuous nonlinearities) rather than
multiple perceptrons (with discontinuous nonlinearities)

(Important, since the model is therefore differentiable which
will be required in the learning process)

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Neural networks

Neural networks are also known as multilayer perceptrons

→ However, the model comprises multiple layers of logistic
regression models (with continuous nonlinearities) rather than
multiple perceptrons (with discontinuous nonlinearities)

(Important, since the model is therefore differentiable which
will be required in the learning process)

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Neural networks

For the input layer, we construct linear combinations of the input

variables x1, . . . , xD1 and weights w11, . . . ,w
(1)
D1D2

z
(2)
j =

D1∑
i=1

w
(1)
ij xi + w

(1)
0j

Each value a
(l)
j in the hidden and output layers l , l ∈ {2, . . . , L} is

computed from z
(l)
j using a differentiable, non-linear activation

function
a

(l)
j = f (l)

act

(
z

(l)
j

)

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Neural networks
Input layer linear combinations of x1, . . . , xD1 and w11, . . . ,wD1D2

z
(2)
j =

D1∑
i=1

w
(1)
ij xi + w

(1)
0j

Activation function: Differentiable, non-linear

a
(2)
j = f (2)

act

(
z

(2)
j

)
fact(·) function is usually a sigmoidal function or tanh

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Neural networks

Values a
(2)
j are then linearly combined in hidden layers:

z
(3)
k =

D2∑
j=1

w
(2)
jk a

(2)
j + w

(2)
0k

with k = 1, . . . ,DL describing the total number of outputs

Again, these values are transformed using a sufficient
transformation function fact to obtain the network outputs

f (3)
act (z

(3)
k)

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Neural networks

Combine these stages to achieve overall network function:

hk(−→x ,−→w) = f (3)
act

 D2∑
j=1

w
(2)
jk f (2)

act

(
D1∑
i=1

w
(1)
ij xi + w

(1)
0j

)
+ w

(2)
0k

(Multiple hidden layers are added analogously)

We speak of Forward propagation since the network elements
are computed from ’left to right’

This is essentially a logistic regression problem where
appropriate features are learned in the first stage of the
network

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Neural networks

Combine these stages to achieve overall network function:

hk(−→x ,−→w) = f (3)
act

 D2∑
j=1

w
(2)
jk f (2)

act

(
D1∑
i=1

w
(1)
ij xi + w

(1)
0j

)
+ w

(2)
0k

(Multiple hidden layers are added analogously)

We speak of Forward propagation since the network elements
are computed from ’left to right’

This is essentially a logistic regression problem where
appropriate features are learned in the first stage of the
network

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Neural networks

Combine these stages to achieve overall network function:

hk(−→x ,−→w) = f (3)
act

 D2∑
j=1

w
(2)
jk f (2)

act

(
D1∑
i=1

w
(1)
ij xi + w

(1)
0j

)
+ w

(2)
0k

(Multiple hidden layers are added analogously)

We speak of Forward propagation since the network elements
are computed from ’left to right’

This is essentially a logistic regression problem where
appropriate features are learned in the first stage of the
network

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Neural networks
With linear activation functions of hidden units ⇒ Always find
equivalent network without hidden units
(Composition of successive linear transformations itself linear transformation)

LL-1L-2

. . .
a1

(L)

(L-1)

y

aD
(L)

w

1

y
2

11

(L
-1

)

w k1

(L
-1

)
w

D
 1

...
...

...
...

...
...

...

x1

xD

...

a1
(2)

aj
(2)

aD
(2)

21 . . .

2

L
1

L-
1

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Neural networks
Number of hidden units < number of input or output units ⇒ not
all linear functions possible
(Information lost in dimensionality reduction at hidden units)

LL-1L-2

. . .
a1

(L)

(L-1)

y

aD
(L)

w

1

y
2

11

(L
-1

)

w k1

(L
-1

)
w

D
 1

...
...

...
...

...
...

...

x1

xD

...

a1
(2)

aj
(2)

aD
(2)

21 . . .

2

L
1

L-
1

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Neural networks

Neural networks are Universal approximators1 2 3 4 5 6 7 8

⇒ 2-layer linear NN can approximate any continuous function

1
K. Funahashi: On the approximate realisation of continuous mappings by neural networks, Neural Networks,

2(3), 183-192, 1989
2

G. Cybenko: Approximation by superpositions of a sigmoidal function. Mathematics of control, signals and
systems, 2, 304-314, 1989

3
K. Hornik, M. Sinchcombe, H. White: Multilayer feed-forward networks are universal approximators. Neural

Networks, 2(5), 359-366, 1989
4

N.E. Cotter: The stone-Weierstrass theorem and its application to neural networks. IEEE Transactions on
Neural Networks 1(4), 290-295, 1990

5
Y. Ito: Representation of functions by superpositions of a step or sigmoid function and their applications to

neural network theory. Neural Networks 4(3), 385-394, 1991
6

K. Hornik: Approximation capabilities of multilayer feed forward networks: Neural Networks, 4(2), 251-257,
1991

7
Y.V. Kreinovich: Arbitrary non-linearity is sufficient to represent all functions by neural networks: a theorem.

Neural Networks 4(3), 381-383, 1991
8

B.D. Ripley: Pattern Recognition and Neural Networks. Cambridge University Press, 1996

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Neural networks
Remaining issue in neural networks

Find suitable parameters given a set of training data

Several learning approaches have been proposed

LL-1L-2

. . .
a1

(L)

(L-1)

y

aD
(L)

w

1

y
2

11

(L
-1

)

w k1

(L
-1

)
w

D
 1

...
...

...
...

...
...

...

x1

xD

...

a1
(2)

aj
(2)

aD
(2)

21 . . .

2

L
1

L-
1

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Neural networks

Simple approach to determine network parameters: Minimise
sum-of-squared error function

Given a training set of samples −→xi with i ∈ {1, . . . ,N}
And corresponding targets −→yi
Minimise the error function

E (−→w) =
1

2

N∑
i=1

(h(−→xi ,−→w)−−→yi)2

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Neural networks – Classification

2 classes C1 and C2

We consider a network with a single output

f (L)
act

(
z(L)

)
≡ 1

1 + e−z
(L)

Output interpreted as conditional probability P(C1|−→x)

Analogously, we have P(C2|−→x) = 1− P(C1|−→x)

K classes C1, · · · , CK
Binary target variables yk ∈ {0, 1}
Network outputs are interpreted as hk(−→x ,−→w) = P(yk = 1|−→x)

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Neural networks – backpropagation (Schematic)
Iterate until the error is sufficiently small

1 Choose training-pair and copy it
to the input layer

2 Propagate it through the
network

3 Calculate error between
computed and expected output

4 Propagate weights back into
network to calculate
hidden-layer error

5 Adapt weights to the error

u
(L)

u
(L)

v
(L)

w
(L-1)

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Neural networks – Cost function
Cost function for Logistic regression

E [W] = − 1
m

[∑m
i=1 yi (log h(xi)) + (1− yi) (log (1− h(xi)))

]
+ λ

2m

∑n
j=1 w

2
j

Cost function for Neural networks

E [W] =

− 1

m

[
m∑
i=1

C∑
c=1

yij log(h(xi))c + (1− yic) log(1− (h(xi))c)

]

+
λ

2m

L−1∑
l=1

Dl∑
i=1

Dl+1∑
j=1

(w
(l)
ji)2

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Neural networks – Cost function
Cost function for Logistic regression

E [W] = − 1
m

[∑m
i=1 yi (log h(xi)) + (1− yi) (log (1− h(xi)))

]
+ λ

2m

∑n
j=1 w

2
j

Cost function for Neural networks

E [W] =

− 1

m

[
m∑
i=1

C∑
c=1

yij log(h(xi))c + (1− yic) log(1− (h(xi))c)

]

+
λ

2m

L−1∑
l=1

Dl∑
i=1

Dl+1∑
j=1

(w
(l)
ji)2

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Neural networks – Cost function

E [W] =

− 1

m

[
m∑
i=1

C∑
c=1

yic log(h(xi))c + (1− yic) log(1− (h(xi))c)

]

+
λ

2m

L−1∑
l=1

Dl∑
u=1

Dl+1∑
v=1

(w (l)
vu)2

m Number of training samples

C Number of classes (output units)

L Count of layers

Dl Number of units at layer l

One cost function for each respective output (class)

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Neural networks – Cost function

E [W] =

− 1

m

[
m∑
i=1

C∑
c=1

yic log(h(xi))c + (1− yic) log(1− (h(xi))c)

]

+
λ

2m

L−1∑
l=1

Dl∑
u=1

Dl+1∑
v=1

(w (l)
vu)2

m Number of training samples

C Number of classes (output units)

L Count of layers

Dl Number of units at layer l

One cost function for each respective output (class)

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Neural networks – Cost function

E [W] =

− 1

m

[
m∑
i=1

C∑
c=1

yic log(h(xi))c + (1− yic) log(1− (h(xi))c)

]

+
λ

2m

L−1∑
l=1

Dl∑
u=1

Dl+1∑
v=1

(w (l)
vu)2

m Number of training samples

C Number of classes (output units)

L Count of layers

Dl Number of units at layer l

One cost function for each respective output (class)

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Neural networks – Cost function

E [W] = − 1
m

[∑m
i=1

∑C
c=1 yic log(h(xi))c + (1− yic) log(1− (h(xi))c)

]
+ λ

2m

∑L−1
l=1

∑Dl

u=1

∑Dl+1

v=1 (w
(l)
vu)2

Aim minimise E [W] (min
W

E [W])

Required ∂

∂w
(l)
vu

E [W]

Backpropagation (effectively compute ∂

∂w
(l)
vu

E [W])

δ
(l)
u Error of node j in layer l

Layer L δ
(L)
u = a

(L)
u − yu → δ(L) = a(L) − y

Layer l δ(l) =
(
W (l)

)T
δ(l+1) ◦ f ′act(z

(l))

(◦ → Hadamard product (Element-wise multiplication))

(f ′act → Derivative of the activation function)

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Neural networks – Cost function

E [W] = − 1
m

[∑m
i=1

∑C
c=1 yic log(h(xi))c + (1− yic) log(1− (h(xi))c)

]
+ λ

2m

∑L−1
l=1

∑Dl

u=1

∑Dl+1

v=1 (w
(l)
vu)2

Aim minimise E [W] (min
W

E [W])

Required ∂

∂w
(l)
vu

E [W]

Backpropagation (effectively compute ∂

∂w
(l)
vu

E [W])

δ
(l)
u Error of node j in layer l

Layer L δ
(L)
u = a

(L)
u − yu → δ(L) = a(L) − y

Layer l δ(l) =
(
W (l)

)T
δ(l+1) ◦ f ′act(z

(l))

(◦ → Hadamard product (Element-wise multiplication))

(f ′act → Derivative of the activation function)

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Neural networks – Cost function

E [W] = − 1
m

[∑m
i=1

∑C
c=1 yic log(h(xi))c + (1− yic) log(1− (h(xi))c)

]
+ λ

2m

∑L−1
l=1

∑Dl

u=1

∑Dl+1

v=1 (w
(l)
vu)2

Aim minimise E [W] (min
W

E [W])

Required ∂

∂w
(l)
vu

E [W]

Backpropagation (effectively compute ∂

∂w
(l)
vu

E [W])

δ
(l)
u Error of node j in layer l

Layer L δ
(L)
u = a

(L)
u − yu → δ(L) = a(L) − y

Layer l δ(l) =
(
W (l)

)T
δ(l+1) ◦ f ′act(z

(l))

(◦ → Hadamard product (Element-wise multiplication))

(f ′act → Derivative of the activation function)

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Neural networks – Cost function

E [W] = − 1
m

[∑m
i=1

∑C
c=1 yic log(h(xi))c + (1− yic) log(1− (h(xi))c)

]
+ λ

2m

∑L−1
l=1

∑Dl

u=1

∑Dl+1

v=1 (w
(l)
vu)2

Aim minimise E [W] (min
W

E [W])

Required ∂

∂w
(l)
vu

E [W]

Backpropagation (effectively compute ∂

∂w
(l)
vu

E [W])

δ
(l)
u Error of node j in layer l

Layer L δ
(L)
u = a

(L)
u − yu → δ(L) = a(L) − y

Layer l δ(l) =
(
W (l)

)T
δ(l+1) ◦ f ′act(z

(l))

(◦ → Hadamard product (Element-wise multiplication))

(f ′act → Derivative of the activation function)

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Neural networks – Cost function

E [W] = − 1
m

[∑m
i=1

∑C
c=1 yic log(h(xi))c + (1− yic) log(1− (h(xi))c)

]
+ λ

2m

∑L−1
l=1

∑Dl

u=1

∑Dl+1

v=1 (w
(l)
vu)2

Aim minimise E [W] (min
W

E [W])

Required ∂

∂w
(l)
vu

E [W]

Backpropagation (effectively compute ∂

∂w
(l)
vu

E [W])

δ
(l)
u Error of node j in layer l

Layer L δ
(L)
u = a

(L)
u − yu → δ(L) = a(L) − y

Layer l δ(l) =
(
W (l)

)T
δ(l+1) ◦ f ′act(z

(l))

(◦ → Hadamard product (Element-wise multiplication))

(f ′act → Derivative of the activation function)

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Neural networks – Cost function

E [W] = − 1
m

[∑m
i=1

∑C
c=1 yic log(h(xi))c + (1− yic) log(1− (h(xi))c)

]
+ λ

2m

∑L−1
l=1

∑Dl

u=1

∑Dl+1

v=1 (w
(l)
vu)2

Aim minimise E [W] (min
W

E [W])

Required ∂

∂w
(l)
vu

E [W]

Backpropagation (effectively compute ∂

∂w
(l)
vu

E [W])

δ
(l)
u Error of node j in layer l

Layer L δ
(L)
u = a

(L)
u − yu → δ(L) = a(L) − y

Layer l δ(l) =
(
W (l)

)T
δ(l+1) ◦ f ′act(z

(l))

(◦ → Hadamard product (Element-wise multiplication))

(f ′act → Derivative of the activation function)
Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Element-wise multiplication

Hadamard product

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 ◦
 b11 b12 b13

b21 b22 b23

b31 b32 b33

 =

 a11 b11 a12 b12 a13 b13

a21 b21 a22 b22 a23 b23

a31 b31 a32 b32 a33 b33

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

LL-1L-2

. . .
y
1

y
2

?

?

Ground
truth

Backpropagation

δ
(l)
u Error of node j in layer l

Layer L δ
(L)
u = a

(L)
u − yu → δ(L) = a(L) − y

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Ground
truth

LL-1L-2

. . .
a1

(L)

(L-1)

y

a2
(L)

w

1

y
2

11

(L
-1

)

w 21

(L
-1

)
w

31

?

?

Backpropagation

δ
(l)
u Error of node j in layer l

Layer L δ
(L)
u = a

(L)
u − yu → δ(L) = a(L) − y

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

LL-1L-2

. . .
a1

(L)

(L-1)

y

a2
(L)

w

1

y
2

11

(L
-1

)

w 21

(L
-1

)
w

31

?

?

Ground
truth

Backpropagation

δ
(l)
u Error of node j in layer l

Layer L δ
(L)
u = a

(L)
u − yu → δ(L) = a(L) − y

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

LL-1L-2

. . .
a1

(L)

(L-1)

y

a2
(L)

w

1

y
2

11

(L
-1

)

w 21

(L
-1

)
w

31

?

?

Ground
truthδ

(L)

Backpropagation

δ
(l)
u Error of node j in layer l

Layer L δ
(L)
u = a

(L)
u − yu → δ(L) = a(L) − y

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

LL-1L-2

. . .
y
1

y
2

?

?

Ground
truth

a1
(L-1)

Backpropagation

δ
(l)
u Error of node j in layer l

Layer L δ
(L)
u = a

(L)
u − yu → δ(L) = a(L) − y

Layer l δ(l) =
(
W (l)

)T
δ(l+1) ◦ f ′act(z

(l))

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

LL-1L-2

. . .
y
1

y
2

?

?

Ground
truth

fact()z(L-1)
1

(L-1)

Backpropagation

δ
(l)
u Error of node j in layer l

Layer L δ
(L)
u = a

(L)
u − yu → δ(L) = a(L) − y

Layer l δ(l) =
(
W (l)

)T
δ(l+1) ◦ f ′act(z

(l))

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

δ
(L-1)

LL-1L-2

. . .
y
1

y
2

?

?

Ground
truth

fact()z(L-1)
1

(L-1)

Backpropagation

δ
(l)
u Error of node j in layer l

Layer L δ
(L)
u = a

(L)
u − yu → δ(L) = a(L) − y

Layer l δ(l) =
(
W (l)

)T
δ(l+1) ◦ f ′act(z

(l))

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

δ
(L-1)

LL-1L-2

. . .
y
1

y
2

?

?

Ground
truth

fact()z(L-1)
1

(L-1)

Backpropagation

δ
(l)
u Error of node j in layer l

Layer L δ
(L)
u = a

(L)
u − yu → δ(L) = a(L) − y

Layer l δ(l) =
(
W (l)

)T
δ(l+1) ◦ f ′act(z

(l))

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

δ
(L-1)

LL-1L-2

. . .
y
1

y
2

?

?

Ground
truth

fact()z(L-1)
1

(L-1)

Backpropagation

δ
(l)
u Error of node j in layer l

Layer L δ
(L)
u = a

(L)
u − yu → δ(L) = a(L) − y

Layer l δ(l) =
(
W (l)

)T
δ(l+1)︸ ︷︷ ︸

direction →(a−y)

◦ f ′act(z
(l))︸ ︷︷ ︸

speed

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Remarks
Initialisation of weights

wij have to be initialised randomly !

wij = 0||wij = wkl∀i , j , j , l ⇒ δ
(l)
u will be identical ∀ u

Ground
truth

LL-1L-2

. . .
a1

(L)

(L-1)

y

a2
(L)

w

1

y
2

11

(L
-1

)

w 21
(L

-1
)

w
31

?

?

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Example: Backpropagation learning

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Example: Backpropagation learning

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Example: Backpropagation learning

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Example: Backpropagation learning

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Example: Backpropagation learning

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Example: Backpropagation learning

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Example: Backpropagation learning

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Example: Backpropagation learning

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Example: Backpropagation learning

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Example: Backpropagation learning

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Example: Backpropagation learning

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Example: Backpropagation learning

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Example: Backpropagation learning

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Example: Backpropagation learning

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Example: Backpropagation learning

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Example: Backpropagation learning

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Example: Backpropagation learning

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Example: Backpropagation learning

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Example: Backpropagation learning

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Backpropagation is an effective way of calculating the gradient of
an ANN error function.

ANN error function

The ANN error function is composed from the sum of the error
functions for the individual inputs:

E (−→w) =
N∑
i=1

En(−→w)

En =
1

2

∑
k

(yik − tik)2

→ In particular, it computes the gradient for each unit:

zj = h(aj); with aj =
∑
i

wjizi → (zi could be an input and zj an output)

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Backpropagation is an effective way of calculating the gradient of
an ANN error function.

ANN error function

The ANN error function is composed from the sum of the error
functions for the individual inputs:

E (−→w) =
N∑
i=1

En(−→w)

En =
1

2

∑
k

(yik − tik)2

→ In particular, it computes the gradient for each unit:

zj = h(aj); with aj =
∑
i

wjizi → (zi could be an input and zj an output)

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

E (−→w) =
N∑
i=1

En(−→w); En =
1

2

∑
k

(yik − tik)2

In each unit, the ANN cost function computes

zj = h(aj); with aj =
∑
i

wjizi → (zi could be an input and zj an output)

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

E (−→w) =
N∑
i=1

En(−→w); En =
1

2

∑
k

(yik − tik)2

zj = h(aj); with aj =
∑
i

wjizi

Compute the derivative of En:
En depends on wij only via the summed input aj → chain-rule:

∂En

∂wij
=
∂En

∂aj

∂aj
∂wji

δj ≡
∂En

∂wji

∂aj
∂wji

= zi
∂En

∂wji
= δjzi

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

E (−→w) =
N∑
i=1

En(−→w); En =
1

2

∑
k

(yik − tik)2

zj = h(aj); with aj =
∑
i

wjizi

Compute the derivative of En:
En depends on wij only via the summed input aj → chain-rule:

∂En

∂wij
=
∂En

∂aj

∂aj
∂wji

δj ≡
∂En

∂wji

∂aj
∂wji

= zi
∂En

∂wji
= δjzi

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

E (−→w) =
N∑
i=1

En(−→w); En =
1

2

∑
k

(yik − tik)2

zj = h(aj); with aj =
∑
i

wjizi

Compute the derivative of En:
En depends on wij only via the summed input aj → chain-rule:

∂En

∂wij
=
∂En

∂aj

∂aj
∂wji

δj ≡
∂En

∂wji

∂aj
∂wji

= zi
∂En

∂wji
= δjzi

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

E (−→w) =
N∑
i=1

En(−→w); En =
1

2

∑
k

(yik − tik)2

zj = h(aj); with aj =
∑
i

wjizi

Compute the derivative of En:
En depends on wij only via the summed input aj → chain-rule:

∂En

∂wij
=
∂En

∂aj

∂aj
∂wji

δj ≡
∂En

∂wji

∂aj
∂wji

= zi
∂En

∂wji
= δjzi

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

E (−→w) =
N∑
i=1

En(−→w); En =
1

2

∑
k

(yik − tik)2

zj = h(aj); with aj =
∑
i

wjizi

Compute the derivative of En:
En depends on wij only via the summed input aj → chain-rule:

∂En

∂wij
=
∂En

∂aj

∂aj
∂wji

δj ≡
∂En

∂aj

∂aj
∂wji

= zi
∂En

∂wji
= δjzi

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

E (−→w) =
N∑
i=1

En(−→w); En =
1

2

∑
k

(yik − tik)2

zj = h(aj); with aj =
∑
i

wjizi

∂En

∂wij
=
∂En

∂aj

∂aj
∂wji

; δj ≡
∂En

∂aj
;

∂En

∂wji
= δjzi

For the output units, we have

δk = yk − tk

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

E (−→w) =
N∑
i=1

En(−→w); En =
1

2

∑
k

(yik − tik)2

zj = h(aj); with aj =
∑
i

wjizi

∂En

∂wij
=
∂En

∂aj

∂aj
∂wji

; δj ≡
∂En

∂aj
;

∂En

∂wji
= δjzi

For the hidden units, use the chain rule again:

δj ≡
∂En

∂aj
=
∑
k

∂En

∂ak

∂ak
∂aj

→ δj = h′(aj)
∑
k

wkjδk

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Outline

Introduction

Perceptron algorithm

Neural networks
Introduction
Definition
Classification
Training Neural Networks
Example: Backpropagation learning

Gradient calculation via backpropagation

Neural Networks for dimensionality reduction

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Neural Networks for dimensionality reduction

Dimensionality reduction can be achieved with a multilayer
perceptron with

→ Same number D1 = DL of inputs as outputs

→ A single hidden layer with D2 < D1 nodes

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Neural Networks for dimensionality reduction

For linear activation functions, it can be shown that the error
function has a global minimum
Furthermore, at this minimum, the network projects the input
vectors onto the D2-dimensional sub-space spanned by the
first D2 principal components

→ Linear dimensionality reduction (Same as for PCA)
Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Neural Networks for dimensionality reduction

With more than 2 layers and non-linear activation functions,
also non-linear dimensionality reduction is possible

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Neural Networks for dimensionality reduction

With more than 2 layers and non-linear activation functions,
also non-linear dimensionality reduction is possible

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Outline

Introduction

Perceptron algorithm

Neural networks
Introduction
Definition
Classification
Training Neural Networks
Example: Backpropagation learning

Gradient calculation via backpropagation

Neural Networks for dimensionality reduction

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Questions?

Stephan Sigg
stephan.sigg@cs.uni-goettingen.de

Machine Learning and Pervasive Computing

Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Literature

C.M. Bishop: Pattern recognition and machine learning,
Springer, 2007.

R.O. Duda, P.E. Hart, D.G. Stork: Pattern Classification,
Wiley, 2001.

Machine Learning and Pervasive Computing

	Introduction
	Perceptron algorithm
	Neural networks
	Introduction
	Definition
	Classification
	Training Neural Networks
	Example: Backpropagation learning

	Gradient calculation via backpropagation
	Neural Networks for dimensionality reduction

