Machine Learning and Pervasive Computing

Stephan Sigg
Georg－August－University Goettingen，Computer Networks

03．06．2015

Overview and Structure

13.04.2015 Organisation
13.04.2015 Introduction
20.04.2015 Rule-based learning
27.04.2015 Decision Trees
04.05.2015 A simple Supervised learning algorithm
11.05.2015 -
18.05.2015 Excursion: Avoiding local optima with random search 25.05.2015 -
01.06.2015 High dimensional data
08.06.2015 Artificial Neural Networks
15.06.2015 k-Nearest Neighbour methods
22.06.2015 Probabilistic models
29.06.2015 Topic models
06.07.2015 Unsupervised learning
13.07.2015 Anomaly detection, Online learning, Recom. systems

Outline

Introduction
Perceptron algorithm
Neural networks
Introduction
Definition
Classification
Training Neural Networks
Example: Backpropagation learning
Gradient calculation via backpropagation
Neural Networks for dimensionality reduction

Motivation

Why yet another classification algorithm ?

Motivation

Why yet another classification algorithm ?

Regression Complex classification requires an enormous number of features

$$
\begin{gathered}
w_{0}+w_{1} x_{1}+w_{2} x_{2}+w_{3} x_{1} x_{2}+ \\
w_{4} x_{1}^{2} x_{2}+w_{5} x_{1}^{3} x_{2}+w_{6} x_{1} x_{2}^{2}+\ldots
\end{gathered}
$$

Motivation

Why yet another classification algorithm ?

Complex classification requires an enormous number of features

$$
\begin{gathered}
w_{0}+w_{1} x_{1}+w_{2} x_{2}+w_{3} x_{1} x_{2}+ \\
w_{4} x_{1}^{2} x_{2}+w_{5} x_{1}^{3} x_{2}+w_{6} x_{1} x_{2}^{2}+\ldots
\end{gathered}
$$

SVM Finding of optimal kernel yet unsolved problem

Motivation

Why yet another classification algorithm ?

Regression Complex classification requires an enormous number of features

$$
\begin{gathered}
w_{0}+w_{1} x_{1}+w_{2} x_{2}+w_{3} x_{1} x_{2}+ \\
w_{4} x_{1}^{2} x_{2}+w_{5} x_{1}^{3} x_{2}+w_{6} x_{1} x_{2}^{2}+\ldots
\end{gathered}
$$

SVM Finding of optimal kernel yet unsolved problem
Artificial Neural Networks are capable of implicitly learning appropriate features also for complex non-linear decision boundaries

Outline

Introduction
Perceptron algorithm
Neural networks
Introduction
Definition
Classification
Training Neural Networks
Example: Backpropagation learning
Gradient calculation via backpropagation
Neural Networks for dimensionality reduction

The perceptron algorithm

1962 Frank Rosenblatt introduces the linear discriminant preceptron algorithm

The perceptron algorithm

1962 Frank Rosenblatt introduces the linear discriminant preceptron algorithm
Two-class model $(t \in\{-1,1\})$ in which the input vector x is first nonlinearly transformed to the feature vector $\phi(x)$:

$$
y(x)=f\left(w^{\top} \phi(x)\right)
$$

The perceptron algorithm

1962 Frank Rosenblatt introduces the linear discriminant preceptron algorithm
Two-class model $(t \in\{-1,1\})$ in which the input vector x is first nonlinearly transformed to the feature vector $\phi(x)$:

$$
y(x)=f\left(w^{\top} \phi(x)\right)
$$

nonlinear activation function defined as a step-function:

$$
f(a)= \begin{cases}+1, & a \geq 0 \\ -1, & a<0\end{cases}
$$

The perceptron algorithm

1962 Frank Rosenblatt introduces the linear discriminant preceptron algorithm
Two-class model $(t \in\{-1,1\})$ in which the input vector x is first nonlinearly transformed to the feature vector $\phi(x)$:

$$
y(x)=f\left(w^{\top} \phi(x)\right)
$$

nonlinear activation function defined as a step-function:

$$
f(a)= \begin{cases}+1, & a \geq 0 \\ -1, & a<0\end{cases}
$$

$\phi(x)$ typically includes a BIAS-component $\phi_{0}(x)=1$

The perceptron algorithm

Training: We are looking for an Error function for a weight vector \vec{w} such that

$$
\begin{array}{ll}
x_{i} \in C_{1}: & \vec{w}^{T} \phi\left(x_{i}\right)>0 \\
x_{i} \in C_{2}: & \vec{w}^{T} \phi\left(x_{i}\right)<0
\end{array}
$$

Perceptron criterion

For the set \mathcal{M} of all misclassified patterns, the perceptron criterion is given as

$$
E_{P}(\vec{w})=-\sum_{i \in \mathcal{M}} \vec{w}^{T} \phi\left(\vec{w}_{i}\right) t_{i}
$$

The perceptron algorithm

Perceptron criterion

For the set \mathcal{M} of all misclassified patterns, the perceptron criterion is given as

$$
E_{P}(\vec{w})=-\sum_{i \in \mathcal{M}} \vec{w}^{T} \phi\left(\vec{w}_{i}\right) t_{i}
$$

The error function is piecewise linear:
linear in regions of \vec{w}-space where pattern is misclassfied
0 in regions where it is classified correctly

The perceptron algorithm

Perceptron criterion

For the set \mathcal{M} of all misclassified patterns, the perceptron criterion is given as

$$
E_{P}(\vec{w})=-\sum_{i \in \mathcal{M}} \vec{w}^{T} \phi\left(\vec{w}_{i}\right) t_{i}
$$

The error function is piecewise linear:
linear in regions of \vec{w}-space where pattern is misclassfied
0 in regions where it is classified correctly
Apply stochastic gradient descent to this error function:

$$
\vec{w}^{t+1}=\vec{w}^{t}-\delta \nabla E_{P}(\vec{w})=\vec{w}^{t}+\delta \phi\left(\vec{w}_{i}\right) t_{i}
$$

The perceptron algorithm

Interpretation of the learning function

$$
\vec{w}^{t+1}=\vec{w}^{t}-\delta \nabla E_{P}(\vec{w})=\vec{w}^{t}+\delta \phi\left(\vec{w}_{i}\right) t_{i}
$$

The perceptron algorithm

Interpretation of the learning function

$$
\vec{w}^{t+1}=\vec{w}^{t}-\delta \nabla E_{P}(\vec{w})=\vec{w}^{t}+\delta \phi\left(\vec{w}_{i}\right) t_{i}
$$

for each x_{i} :
correct classification: weight vector remains unchanged incorrect classification:
${\text { Class } C_{1}:}$ add vector $\phi\left(\vec{w}_{i}\right)$
${\text { Class } C_{2}:}$ subtract vector $\phi\left(\vec{w}_{i}\right)$

The perceptron algorithm

The perceptron algorithm

The perceptron algorithm

The perceptron algorithm

The perceptron algorithm

The perceptron algorithm

The perceptron algorithm

The perceptron algorithm

Perceptron convergence theorem

Iff the training data is linearly separable, then the perceptron learning algorithm will always find an exact solution in finite number of steps.
\rightarrow Still, number of steps required might be very large
\rightarrow Until convergence, it is not possible to distinguish separable problem from non-separable
\rightarrow For on-separable data sets the algorithm will never converge

Outline

Introduction
Perceptron algorithm
Neural networks
Introduction
Definition
Classification
Training Neural Networks
Example: Backpropagation learning
Gradient calculation via backpropagation
Neural Networks for dimensionality reduction

Neural networks

Learn mapping from input to output vector

Representation by edge-weighted graph

Distinction between

- Input neurons

- Output neurons
- Hidden nodes

Neural networks

Neural networks

Input neurons are only equipped with outgoing edges

Neural networks

Single hidden layer sufficient to represent arbitrary multi-dimensional functions

Well suited for noisy input data Implicit clustering of input data possible

Complex to extend network (e.g. add new features)

Neural networks

Neural networks are also known as multilayer perceptrons

Neural networks

Neural networks are also known as multilayer perceptrons
\rightarrow However, the model comprises multiple layers of logistic regression models (with continuous nonlinearities) rather than multiple perceptrons (with discontinuous nonlinearities) (Important, since the model is therefore differentiable which will be required in the learning process)

Neural networks

For the input layer, we construct linear combinations of the input variables $x_{1}, \ldots, x_{D_{1}}$ and weights $w_{11}, \ldots, w_{D_{1} D_{2}}^{(1)}$

$$
z_{j}^{(2)}=\sum_{i=1}^{D_{1}} w_{i j}^{(1)} x_{i}+w_{0 j}^{(1)}
$$

Each value $a_{j}^{(I)}$ in the hidden and output layers $I, I \in\{2, \ldots, L\}$ is computed from $z_{j}^{(I)}$ using a differentiable, non-linear activation function

$$
a_{j}^{(I)}=f_{\mathrm{act}}^{(I)}\left(z_{j}^{(I)}\right)
$$

Neural networks

Input layer linear combinations of $x_{1}, \ldots, x_{D_{1}}$ and $w_{11}, \ldots, w_{D_{1} D_{2}}$

$$
z_{j}^{(2)}=\sum_{i=1}^{D_{1}} w_{i j}^{(1)} x_{i}+w_{0 j}^{(1)}
$$

Activation function: Differentiable, non-linear

$$
a_{j}^{(2)}=f_{\mathrm{act}}^{(2)}\left(z_{j}^{(2)}\right)
$$

$f_{\text {act }}(\cdot)$ function is usually a sigmoidal function or tanh

Neural networks

Values $a_{j}^{(2)}$ are then linearly combined in hidden layers:

$$
z_{k}^{(3)}=\sum_{j=1}^{D_{2}} w_{j k}^{(2)} a_{j}^{(2)}+w_{0 k}^{(2)}
$$

with $k=1, \ldots, D_{L}$ describing the total number of outputs
Again, these values are transformed using a sufficient transformation function $f_{\text {act }}$ to obtain the network outputs

$$
f_{\mathrm{act}}^{(3)}\left(z_{k}^{(3)}\right)
$$

Neural networks

Combine these stages to achieve overall network function:

$$
h_{k}(\vec{x}, \vec{w})=f_{\mathrm{act}}^{(3)}\left(\sum_{j=1}^{D_{2}} w_{j k}^{(2)} f_{\mathrm{act}}^{(2)}\left(\sum_{i=1}^{D_{1}} w_{i j}^{(1)} x_{i}+w_{0 j}^{(1)}\right)+w_{0 k}^{(2)}\right)
$$

(Multiple hidden layers are added analogously)

Neural networks

Combine these stages to achieve overall network function:

$$
h_{k}(\vec{x}, \vec{w})=f_{\mathrm{act}}^{(3)}\left(\sum_{j=1}^{D_{2}} w_{j k}^{(2)} f_{\mathrm{act}}^{(2)}\left(\sum_{i=1}^{D_{1}} w_{i j}^{(1)} x_{i}+w_{0 j}^{(1)}\right)+w_{0 k}^{(2)}\right)
$$

(Multiple hidden layers are added analogously)
We speak of Forward propagation since the network elements are computed from 'left to right'

Neural networks

Combine these stages to achieve overall network function:

$$
h_{k}(\vec{x}, \vec{w})=f_{\mathrm{act}}^{(3)}\left(\sum_{j=1}^{D_{2}} w_{j k}^{(2)} f_{\mathrm{act}}^{(2)}\left(\sum_{i=1}^{D_{1}} w_{i j}^{(1)} x_{i}+w_{0 j}^{(1)}\right)+w_{0 k}^{(2)}\right)
$$

(Multiple hidden layers are added analogously)
We speak of Forward propagation since the network elements are computed from 'left to right'

This is essentially a logistic regression problem where appropriate features are learned in the first stage of the network

Neural networks

With linear activation functions of hidden units \Rightarrow Always find equivalent network without hidden units
(Composition of successive linear transformations itself linear transformation)

Neural networks

Number of hidden units < number of input or output units \Rightarrow not all linear functions possible
(Information lost in dimensionality reduction at hidden units)

Neural networks

Neural networks are Universal approximators ${ }^{1} 2345678$ \Rightarrow 2-layer linear NN can approximate any continuous function

[^0]
Neural networks

Remaining issue in neural networks

- Find suitable parameters given a set of training data
- Several learning approaches have been proposed

Neural networks

Simple approach to determine network parameters: Minimise sum-of-squared error function

- Given a training set of samples $\overrightarrow{x_{i}}$ with $i \in\{1, \ldots, N\}$
- And corresponding targets $\overrightarrow{y_{i}}$
- Minimise the error function

$$
E(\vec{w})=\frac{1}{2} \sum_{i=1}^{N}\left(h\left(\overrightarrow{x_{i}}, \vec{w}\right)-\overrightarrow{y_{i}}\right)^{2}
$$

Neural networks - Classification

2 classes \mathcal{C}_{1} and \mathcal{C}_{2}

- We consider a network with a single output

$$
f_{\mathrm{act}}^{(L)}\left(z^{(L)}\right) \equiv \frac{1}{1+e^{-z^{(L)}}}
$$

- Output interpreted as conditional probability $\mathcal{P}\left(\mathcal{C}_{1} \mid \vec{x}\right)$
- Analogously, we have $\mathcal{P}\left(\mathcal{C}_{2} \mid \vec{x}\right)=1-\mathcal{P}\left(\mathcal{C}_{1} \mid \vec{x}\right)$
\underline{K} classes $\mathcal{C}_{1}, \cdots, \mathcal{C}_{K}$
- Binary target variables $y_{k} \in\{0,1\}$
- Network outputs are interpreted as $h_{k}(\vec{x}, \vec{w})=\mathcal{P}\left(y_{k}=1 \mid \vec{x}\right)$

Neural networks - backpropagation (Schematic)

Iterate until the error is sufficiently small
(1) Choose training-pair and copy it to the input layer
(2) Propagate it through the network
(3) Calculate error between computed and expected output
(9) Propagate weights back into network to calculate hidden-layer error
(0) Adapt weights to the error

Neural networks - Cost function
Cost function for Logistic regression

$$
\begin{gathered}
E[W]=-\frac{1}{m}\left[\sum_{i=1}^{m} y_{i}\left(\log h\left(x_{i}\right)\right)+\left(1-y_{i}\right)\left(\log \left(1-h\left(x_{i}\right)\right)\right)\right] \\
+\frac{\lambda}{2 m} \sum_{j=1}^{n} w_{j}^{2}
\end{gathered}
$$

Cost function for Neural networks

Neural networks - Cost function

Cost function for Logistic regression

$$
\begin{gathered}
E[W]=-\frac{1}{m}\left[\sum_{i=1}^{m} y_{i}\left(\log h\left(x_{i}\right)\right)+\left(1-y_{i}\right)\left(\log \left(1-h\left(x_{i}\right)\right)\right)\right] \\
+\frac{\lambda}{2 m} \sum_{j=1}^{n} w_{j}^{2}
\end{gathered}
$$

Cost function for Neural networks

$$
\begin{array}{r}
E[W]= \\
-\frac{1}{m}\left[\sum_{i=1}^{m} \sum_{c=1}^{c} y_{i j} \log \left(h\left(x_{i}\right)\right)_{c}+\left(1-y_{i c}\right) \log \left(1-\left(h\left(x_{i}\right)\right)_{c}\right)\right] \\
+\frac{\lambda}{2 m} \sum_{l=1}^{L-1} \sum_{i=1}^{D_{l}} \sum_{j=1}^{D_{l+1}}\left(w_{j i}^{(l)}\right)^{2}
\end{array}
$$

Neural networks - Cost function

$$
\begin{array}{r}
E[W]= \\
-\frac{1}{m}\left[\sum_{i=1}^{m} \sum_{c=1}^{c} y_{i c} \log \left(h\left(x_{i}\right)\right)_{c}+\left(1-y_{i c}\right) \log \left(1-\left(h\left(x_{i}\right)\right)_{c}\right)\right] \\
+\frac{\lambda}{2 m} \sum_{l=1}^{L-1} \sum_{u=1}^{D_{l}} \sum_{v=1}^{D_{l+1}}\left(w_{v u}^{(I)}\right)^{2}
\end{array}
$$

Neural networks - Cost function

$$
\begin{array}{r}
E[W]= \\
-\frac{1}{m}\left[\sum_{i=1}^{m} \sum_{c=1}^{c} y_{i c} \log \left(h\left(x_{i}\right)\right)_{c}+\left(1-y_{i c}\right) \log \left(1-\left(h\left(x_{i}\right)\right)_{c}\right)\right] \\
+\frac{\lambda}{2 m} \sum_{l=1}^{L-1} \sum_{u=1}^{D_{1}} \sum_{v=1}^{D_{l+1}}\left(w^{(1)}{ }_{v u}\right)^{2}
\end{array}
$$

m Number of training samples
C Number of classes (output units)
L Count of layers
$D_{\text {I }}$ Number of units at layer /

Neural networks - Cost function

$$
\begin{array}{r}
E[W]= \\
-\frac{1}{m}\left[\sum_{i=1}^{m} \sum_{c=1}^{C} y_{i c} \log \left(h\left(x_{i}\right)\right)_{c}+\left(1-y_{i c}\right) \log \left(1-\left(h\left(x_{i}\right)\right)_{c}\right)\right] \\
+\frac{\lambda}{2 m} \sum_{l=1}^{L-1} \sum_{u=1}^{D_{1}} \sum_{v=1}^{D_{l+1}}\left(w^{(1)}{ }_{v u}\right)^{2}
\end{array}
$$

m Number of training samples
C Number of classes (output units)
L Count of layers
$D_{\text {I }}$ Number of units at layer /

One cost function for each respective output (class)

Neural networks - Cost function

$$
\begin{gathered}
E[W]=-\frac{1}{m}\left[\sum_{i=1}^{m} \sum_{c=1}^{C} y_{i c} \log \left(h\left(x_{i}\right)\right)_{c}+\left(1-y_{i c}\right) \log \left(1-\left(h\left(x_{i}\right)\right)_{c}\right)\right] \\
+\frac{\lambda}{2 m} \sum_{l=1}^{L-1} \sum_{u=1}^{D_{l}} \sum_{v=1}^{D_{l 1}\left(w_{v u}^{\prime(1)}\right)^{2}}
\end{gathered}
$$

Neural networks - Cost function

$$
\begin{gathered}
E[W]=-\frac{1}{m}\left[\sum_{i=1}^{m} \sum_{c=1}^{C} y_{i c} \log \left(h\left(x_{i}\right)\right)_{c}+\left(1-y_{i c}\right) \log \left(1-\left(h\left(x_{i}\right)\right)_{c}\right)\right] \\
+\frac{\lambda}{2 m} \sum_{l=1}^{L-1} \sum_{u=1}^{D_{l}} \sum_{v=1}^{D_{l 1}\left(w_{v u}^{(1)}\right)^{2}}
\end{gathered}
$$

Aim minimise $E[W]\left(\min _{W} E[W]\right)$

Neural networks - Cost function

$$
\begin{gathered}
E[W]=-\frac{1}{m}\left[\sum_{i=1}^{m} \sum_{c=1}^{C} y_{i c} \log \left(h\left(x_{i}\right)\right)_{c}+\left(1-y_{i c}\right) \log \left(1-\left(h\left(x_{i}\right)\right)_{c}\right)\right] \\
+\frac{\lambda}{2 m} \sum_{l=1}^{L-1} \sum_{u=1}^{D_{1}} \sum_{v=1}^{\left.D_{l 1}\left(w_{v u}\right)\right)^{2}}
\end{gathered}
$$

Aim minimise $E[W]\left(\min _{W} E[W]\right)$
Required $\frac{\partial}{\partial w_{v u}^{(I)}} E[W]$

Neural networks - Cost function

$$
\begin{gathered}
E[W]=-\frac{1}{m}\left[\sum_{i=1}^{m} \sum_{c=1}^{C} y_{i c} \log \left(h\left(x_{i}\right)\right)_{c}+\left(1-y_{i c}\right) \log \left(1-\left(h\left(x_{i}\right)\right)_{c}\right)\right] \\
+\frac{\lambda}{2 m} \sum_{l=1}^{L-1} \sum_{u=1}^{D_{l}} \sum_{v=1}^{\left.D_{l 1}\left(W_{v u}\right)\right)^{2}}
\end{gathered}
$$

Aim minimise $E[W]\left(\min _{W} E[W]\right)$
Required $\frac{\partial}{\partial w_{v u}^{(1)}} E[W]$

Backpropagation (effectively compute $\frac{\partial}{\partial w_{10}^{(0)}} E[W]$)

$\delta_{u}^{(I)}$ Error of node j in layer I
Layer $L \delta_{u}^{(L)}=a_{u}^{(L)}-y_{u} \rightarrow \delta^{(L)}=a^{(L)}-y$

Neural networks - Cost function

$$
\begin{gathered}
E[W]=-\frac{1}{m}\left[\sum_{i=1}^{m} \sum_{c=1}^{C} y_{i c} \log \left(h\left(x_{i}\right)\right)_{c}+\left(1-y_{i c}\right) \log \left(1-\left(h\left(x_{i}\right)\right)_{c}\right)\right] \\
+\frac{\lambda}{2 m} \sum_{l=1}^{L-1} \sum_{u=1}^{D_{1}} \sum_{v=1}^{\left.D_{l+1}\left(w_{v u}\right)\right)^{2}}
\end{gathered}
$$

Aim minimise $E[W]\left(\min _{W} E[W]\right)$
Required $\frac{\partial}{\partial w_{v u}^{(1)}} E[W]$

Backpropagation (effectively compute $\frac{\partial}{\partial w_{10}^{(M)}} E[W]$)

$\delta_{u}^{(1)}$ Error of node j in layer I
Layer $L \delta_{u}^{(L)}=a_{u}^{(L)}-y_{u} \rightarrow \delta^{(L)}=a^{(L)}-y$
Layer $/ \delta^{(I)}=\left(W^{(I)}\right)^{T} \delta^{(l+1)} \circ f_{\text {act }}^{\prime}\left(z^{(I)}\right)$

Neural networks - Cost function

$$
\begin{gathered}
E[W]=-\frac{1}{m}\left[\sum_{i=1}^{m} \sum_{c=1}^{C} y_{i c} \log \left(h\left(x_{i}\right)\right)_{c}+\left(1-y_{i c}\right) \log \left(1-\left(h\left(x_{i}\right)\right)_{c}\right)\right] \\
+\frac{\lambda}{2 m} \sum_{l=1}^{L-1} \sum_{u=1}^{D_{1}} \sum_{v=1}^{\left.D_{l+1}\left(w_{v u}\right)\right)^{2}}
\end{gathered}
$$

Aim minimise $E[W]\left(\min _{W} E[W]\right)$
Required $\frac{\partial}{\partial w_{v u}^{(1)}} E[W]$

Backpropagation (effectively compute $\frac{\partial}{\partial w_{u}^{(0)}} E[W]$)

$\delta_{u}^{(I)}$ Error of node j in layer $/$
Layer $L \delta_{u}^{(L)}=a_{u}^{(L)}-y_{u} \rightarrow \delta^{(L)}=a^{(L)}-y$
Layer / $\delta^{(I)}=\left(W^{(I)}\right)^{T} \delta^{(I+1)} \circ f_{\text {act }}^{\prime}\left(z^{(I)}\right)$
$(\circ \rightarrow$ Hadamard product (Element-wise multiplication))
($f_{\text {act }}^{\prime} \rightarrow$ Derivative of the activation function)

Element-wise multiplication

Hadamard product

$$
\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right) \circ\left(\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23} \\
b_{31} & b_{32} & b_{33}
\end{array}\right)=\left(\begin{array}{lll}
a_{31} b_{11} & a_{12} b_{12} & a_{13} b_{13} \\
a_{21} b_{21} & a_{22} b_{22} & a_{23} b_{23} \\
a_{31} b_{31} & a_{32} b_{32} & a_{33} b_{33}
\end{array}\right)
$$

Backpropagation

$\delta_{u}^{(I)}$ Error of node j in layer I
Layer $L \delta_{u}^{(L)}=a_{u}^{(L)}-y_{u} \rightarrow \delta^{(L)}=a^{(L)}-y$

Backpropagation

$\delta_{u}^{(I)}$ Error of node j in layer I
Layer $L \delta_{u}^{(L)}=a_{u}^{(L)}-y_{u} \rightarrow \delta^{(L)}=a^{(L)}-y$

Backpropagation

$\delta_{u}^{(I)}$ Error of node j in layer I
Layer $L \delta_{u}^{(L)}=a_{u}^{(L)}-y_{u} \rightarrow \delta^{(L)}=a^{(L)}-y$

Backpropagation

$\delta_{u}^{(I)}$ Error of node j in layer I
Layer $L \delta_{u}^{(L)}=a_{u}^{(L)}-y_{u} \rightarrow \delta^{(L)}=a^{(L)}-y$

Backpropagation

$\delta_{u}^{(I)}$ Error of node j in layer I
Layer $L \delta_{u}^{(L)}=a_{u}^{(L)}-y_{u} \rightarrow \delta^{(L)}=a^{(L)}-y$
Layer / $\delta^{(I)}=\left(W^{(I)}\right)^{T} \delta^{(I+1)} \circ f_{\text {act }}^{\prime}\left(z^{(I)}\right)$

Backpropagation

$\delta_{u}^{(I)}$ Error of node j in layer I
Layer $L \delta_{u}^{(L)}=a_{u}^{(L)}-y_{u} \rightarrow \delta^{(L)}=a^{(L)}-y$
Layer I $\delta^{(I)}=\left(W^{(I)}\right)^{T} \delta^{(I+1)} \circ f_{\text {act }}^{\prime}\left(z^{(I)}\right)$

Backpropagation

$\delta_{u}^{(I)}$ Error of node j in layer I
Layer $L \delta_{u}^{(L)}=a_{u}^{(L)}-y_{u} \rightarrow \delta^{(L)}=a^{(L)}-y$
Layer I $\delta^{(I)}=\left(W^{(I)}\right)^{T} \delta^{(I+1)} \circ f_{\text {act }}^{\prime}\left(z^{(I)}\right)$

Backpropagation

$\delta_{u}^{(I)}$ Error of node j in layer I
Layer $L \delta_{u}^{(L)}=a_{u}^{(L)}-y_{u} \rightarrow \delta^{(L)}=a^{(L)}-y$
Layer / $\delta^{(I)}=\left(W^{(I)}\right)^{T} \delta^{(I+1)} \circ f_{\text {act }}^{\prime}\left(z^{(I)}\right)$

Backpropagation

$\delta_{u}^{(I)}$ Error of node j in layer I
Layer $L \delta_{u}^{(L)}=a_{u}^{(L)}-y_{u} \rightarrow \delta^{(L)}=a^{(L)}-y$
Layer / $\delta^{(I)}=\underbrace{\left(W^{(I)}\right)^{T} \delta^{(I+1)}}_{\text {direction } \rightarrow(a-y)} \circ \underbrace{f_{\text {act }}^{\prime}\left(z^{(I)}\right)}_{\text {speed }}$

Remarks

Initialisation of weights

$$
\begin{gathered}
w_{i j} \underline{\text { have to }} \text { be initialised randomly ! } \\
w_{i j}=0 \| w_{i j}=w_{k \mid} \forall i, j, j, I \Rightarrow \underline{\delta_{u}^{(I)}} \text { will be identical } \forall u
\end{gathered}
$$

Example: Backpropagation learning

Example: Backpropagation learning

Example: Backpropagation learning

Example: Backpropagation learning

Example: Backpropagation learning

Example: Backpropagation learning

Example: Backpropagation learning

Example: Backpropagation learning

Example: Backpropagation learning

Backpropagation is an effective way of calculating the gradient of an ANN error function.

ANN error function

The ANN error function is composed from the sum of the error functions for the individual inputs:

$$
\begin{gathered}
E(\vec{w})=\sum_{i=1}^{N} E_{n}(\vec{w}) \\
E_{n}=\frac{1}{2} \sum_{k}\left(y_{i k}-t_{i k}\right)^{2}
\end{gathered}
$$

Backpropagation is an effective way of calculating the gradient of an ANN error function.

ANN error function

The ANN error function is composed from the sum of the error functions for the individual inputs:

$$
\begin{gathered}
E(\vec{w})=\sum_{i=1}^{N} E_{n}(\vec{w}) \\
E_{n}=\frac{1}{2} \sum_{k}\left(y_{i k}-t_{i k}\right)^{2}
\end{gathered}
$$

\rightarrow In particular, it computes the gradient for each unit:

$$
z_{j}=h\left(a_{j}\right) ; \text { with } a_{j}=\sum_{i} w_{j i} z_{i} \rightarrow\left(z_{i} \text { could be an input and } z_{j} \text { an output }\right)
$$

$$
E(\vec{w})=\sum_{i=1}^{N} E_{n}(\vec{w}) ; \quad E_{n}=\frac{1}{2} \sum_{k}\left(y_{i k}-t_{i k}\right)^{2}
$$

In each unit, the ANN cost function computes

$$
z_{j}=h\left(a_{j}\right) ; \text { with } a_{j}=\sum_{i} w_{j i} z_{i} \rightarrow\left(z_{i} \text { could be an input and } z_{j} \text { an output }\right)
$$

$$
\begin{array}{r}
E(\vec{w})=\sum_{i=1}^{N} E_{n}(\vec{w}) ; \quad E_{n}=\frac{1}{2} \sum_{k}\left(y_{i k}-t_{i k}\right)^{2} \\
z_{j}=h\left(a_{j}\right) ; \text { with } a_{j}=\sum_{i} w_{j i} z_{i}
\end{array}
$$

$$
\begin{array}{r}
E(\vec{w})=\sum_{i=1}^{N} E_{n}(\vec{w}) ; \quad E_{n}=\frac{1}{2} \sum_{k}\left(y_{i k}-t_{i k}\right)^{2} \\
z_{j}=h\left(a_{j}\right) ; \text { with } a_{j}=\sum_{i} w_{j i} z_{i}
\end{array}
$$

Compute the derivative of E_{n} :

- E_{n} depends on $w_{i j}$ only via the summed input $a_{j} \rightarrow$ chain-rule:

$$
\frac{\partial E_{n}}{\partial w_{i j}}=\frac{\partial E_{n}}{\partial a_{j}} \frac{\partial a_{j}}{\partial w_{j i}}
$$

$$
\begin{array}{r}
E(\vec{w})=\sum_{i=1}^{N} E_{n}(\vec{w}) ; \quad E_{n}=\frac{1}{2} \sum_{k}\left(y_{i k}-t_{i k}\right)^{2} \\
z_{j}=h\left(a_{j}\right) ; \text { with } a_{j}=\sum_{i} w_{j i} z_{i}
\end{array}
$$

Compute the derivative of E_{n} :

- E_{n} depends on $w_{i j}$ only via the summed input $a_{j} \rightarrow$ chain-rule:

$$
\frac{\partial E_{n}}{\partial w_{i j}}=\frac{\partial E_{n}}{\partial a_{j}} \frac{\partial a_{j}}{\partial w_{j i}}
$$

$$
\delta_{j} \equiv \frac{\partial E_{n}}{\partial w_{j i}}
$$

$$
\begin{array}{r}
E(\vec{w})=\sum_{i=1}^{N} E_{n}(\vec{w}) ; \quad E_{n}=\frac{1}{2} \sum_{k}\left(y_{i k}-t_{i k}\right)^{2} \\
z_{j}=h\left(a_{j}\right) ; \text { with } a_{j}=\sum_{i} w_{j i} z_{i}
\end{array}
$$

Compute the derivative of E_{n} :

- E_{n} depends on $w_{i j}$ only via the summed input $a_{j} \rightarrow$ chain-rule:

$$
\frac{\partial E_{n}}{\partial w_{i j}}=\frac{\partial E_{n}}{\partial a_{j}} \frac{\partial a_{j}}{\partial w_{j i}}
$$

$$
\delta_{j} \equiv \frac{\partial E_{n}}{\partial w_{j i}} \quad \frac{\partial a_{j}}{\partial w_{j i}}=z_{i}
$$

$$
\begin{array}{r}
E(\vec{w})=\sum_{i=1}^{N} E_{n}(\vec{w}) ; \quad E_{n}=\frac{1}{2} \sum_{k}\left(y_{i k}-t_{i k}\right)^{2} \\
z_{j}=h\left(a_{j}\right) ; \text { with } a_{j}=\sum_{i} w_{j i} z_{i}
\end{array}
$$

Compute the derivative of E_{n} :

- E_{n} depends on $w_{i j}$ only via the summed input $a_{j} \rightarrow$ chain-rule:

$$
\begin{aligned}
\frac{\partial E_{n}}{\partial w_{i j}} & =\frac{\partial E_{n}}{\partial a_{j}} \frac{\partial a_{j}}{\partial w_{j i}} \\
\delta_{j} \equiv \frac{\partial E_{n}}{\partial a_{j}} & \frac{\partial a_{j}}{\partial w_{j i}}
\end{aligned}=z_{i} \quad \frac{\partial E_{n}}{\partial w_{j i}}=\delta_{j} z_{i}
$$

$$
\begin{array}{r}
E(\vec{w})=\sum_{i=1}^{N} E_{n}(\vec{w}) ; \quad E_{n}=\frac{1}{2} \sum_{k}\left(y_{i k}-t_{i k}\right)^{2} \\
z_{j}=h\left(a_{j}\right) ; \text { with } a_{j}=\sum_{i} w_{j i} z_{i} \\
\frac{\partial E_{n}}{\partial w_{i j}}=\frac{\partial E_{n}}{\partial a_{j}} \frac{\partial a_{j}}{\partial w_{j i}} ; \quad \delta_{j} \equiv \frac{\partial E_{n}}{\partial a_{j}} ; \quad \frac{\partial E_{n}}{\partial w_{j i}}=\delta_{j} z_{i}
\end{array}
$$

For the output units, we have

$$
\delta_{k}=y_{k}-t_{k}
$$

$$
\begin{array}{r}
E(\vec{w})=\sum_{i=1}^{N} E_{n}(\vec{w}) ; \quad E_{n}=\frac{1}{2} \sum_{k}\left(y_{i k}-t_{i k}\right)^{2} \\
z_{j}=h\left(a_{j}\right) ; \text { with } a_{j}=\sum_{i} w_{j i} z_{i} \\
\frac{\partial E_{n}}{\partial w_{i j}}=\frac{\partial E_{n}}{\partial a_{j}} \frac{\partial a_{j}}{\partial w_{j i}} ; \quad \delta_{j} \equiv \frac{\partial E_{n}}{\partial a_{j}} ; \quad \frac{\partial E_{n}}{\partial w_{j i}}=\delta_{j} z_{i}
\end{array}
$$

For the hidden units, use the chain rule again:

$$
\delta_{j} \equiv \frac{\partial E_{n}}{\partial a_{j}}=\sum_{k} \frac{\partial E_{n}}{\partial a_{k}} \frac{\partial a_{k}}{\partial a_{j}} \quad \rightarrow \delta_{j}=h^{\prime}\left(a_{j}\right) \sum_{k} w_{k j} \delta_{k}
$$

Outline

Introduction
Perceptron algorithm
Neural networks
Introduction
Definition
Classification
Training Neural Networks
Example: Backpropagation learning
Gradient calculation via backpropagation
Neural Networks for dimensionality reduction

Neural Networks for dimensionality reduction

Dimensionality reduction can be achieved with a multilayer perceptron with
\rightarrow Same number $D_{1}=D_{L}$ of inputs as outputs
\rightarrow A single hidden layer with $D_{2}<D_{1}$ nodes

Neural Networks for dimensionality reduction

For linear activation functions, it can be shown that the error function has a global minimum
Furthermore, at this minimum, the network projects the input vectors onto the D_{2}-dimensional sub-space spanned by the first D_{2} principal components
\rightarrow Linear dimensionality reduction (Same as for PCA)

Neural Networks for dimensionality reduction

With more than 2 layers and non-linear activation functions, also non-linear dimensionality reduction is possible

Neural Networks for dimensionality reduction

With more than 2 layers and non-linear activation functions, also non-linear dimensionality reduction is possible

Outline

Introduction
Perceptron algorithm
Neural networks
Introduction
Definition
Classification
Training Neural Networks
Example: Backpropagation learning
Gradient calculation via backpropagation
Neural Networks for dimensionality reduction

Questions?

Stephan Sigg
stephan.sigg@cs.uni-goettingen.de

Literature

- C.M. Bishop: Pattern recognition and machine learning, Springer, 2007.
- R.O. Duda, P.E. Hart, D.G. Stork: Pattern Classification, Wiley, 2001.

[^0]: ${ }^{1}$ K. Funahashi: On the approximate realisation of continuous mappings by neural networks, Neural Networks, 2(3), 183-192, 1989
 ${ }^{2}$ G. Cybenko: Approximation by superpositions of a sigmoidal function. Mathematics of control, signals and systems, 2, 304-314, 1989
 ${ }^{3}$ K. Hornik, M. Sinchcombe, H. White: Multilayer feed-forward networks are universal approximators. Neural Networks, 2(5), 359-366, 1989
 ${ }^{4}$ N.E. Cotter: The stone-Weierstrass theorem and its application to neural networks. IEEE Transactions on Neural Networks 1(4), 290-295, 1990

 5
 ${ }^{5}$ Y. Ito: Representation of functions by superpositions of a step or sigmoid function and their applications to neural network theory. Neural Networks 4(3), 385-394, 1991
 ${ }^{6}$ K. Hornik: Approximation capabilities of multilayer feed forward networks: Neural Networks, 4(2), 251-257, 1991
 ${ }^{7}$ Y.V. Kreinovich: Arbitrary non-linearity is sufficient to represent all functions by neural networks: a theorem. Neural Networks 4(3), 381-383, 1991
 8_{B}
 B.D. Ripley: Pattern Recognition and Neural Networks. Cambridge University Press, 1996

