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Motivation

Why yet another classification algorithm ?

Regression Complex classification requires an
enormous number of features

w0 + w1x1 + w2x2 + w3x1x2 +

w4x
2
1x2 + w5x

3
1x2 + w6x1x

2
2 + . . .

SVM Finding of optimal kernel yet unsolved
problem

Artificial Neural Networks are capable
of implicitly learning appropriate
features also for complex non-linear
decision boundaries
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The perceptron algorithm

1962 Frank Rosenblatt introduces the linear discriminant preceptron
algorithm

Two-class model (t ∈ {−1, 1}) in which the input vector x is
first nonlinearly transformed to the feature vector φ(x):

y(x) = f (wTφ(x))

nonlinear activation function defined as a step-function:

f (a) =

{
+1, a ≥ 0
−1, a < 0.

φ(x) typically includes a BIAS-component φ0(x) = 1
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The perceptron algorithm

Training: We are looking for an Error function for a weight vector
−→w such that

xi ∈ C1 : −→w Tφ(xi ) > 0
xi ∈ C2 : −→w Tφ(xi ) < 0

Perceptron criterion

For the set M of all misclassified patterns, the perceptron criterion
is given as

EP(−→w ) = −
∑
i∈M

−→w Tφ(−→w i )ti
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For the set M of all misclassified patterns, the perceptron criterion
is given as

EP(−→w ) = −
∑
i∈M

−→w Tφ(−→w i )ti

The error function is piecewise linear:
linear in regions of −→w -space where pattern is misclassfied

0 in regions where it is classified correctly

Apply stochastic gradient descent to this error function:

−→w t+1 = −→w t − δ∇EP(−→w ) = −→w t + δφ(−→wi )ti
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The perceptron algorithm

Interpretation of the learning function

−→w t+1 = −→w t − δ∇EP(−→w ) = −→w t + δφ(−→wi )ti

for each xi :

correct classification: weight vector remains unchanged
incorrect classification:

ClassC1 : add vector φ(−→wi )
ClassC2 : subtract vector φ(−→wi )
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The perceptron algorithm

Perceptron convergence theorem

Iff the training data is linearly separable, then the perceptron
learning algorithm will always find an exact solution in finite
number of steps.

→ Still, number of steps required might be very large

→ Until convergence, it is not possible to distinguish separable
problem from non-separable

→ For on-separable data sets the algorithm will never converge

Machine Learning and Pervasive Computing
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Neural networks

Learn mapping from input to
output vector

Representation by
edge-weighted graph

Distinction between

Input neurons

Output neurons

Hidden nodes
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Neural networks
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Neural networks

Input neurons are only equipped with
outgoing edges Σ
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Neural networks
Single hidden layer sufficient to represent arbitrary
multi-dimensional functions

Well suited for noisy input data

Implicit clustering of input data possible

Complex to extend network (e.g. add new features)
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Neural networks

Neural networks are also known as multilayer perceptrons

→ However, the model comprises multiple layers of logistic
regression models (with continuous nonlinearities) rather than
multiple perceptrons (with discontinuous nonlinearities)

(Important, since the model is therefore differentiable which
will be required in the learning process)
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Neural networks

For the input layer, we construct linear combinations of the input

variables x1, . . . , xD1 and weights w11, . . . ,w
(1)
D1D2

z
(2)
j =

D1∑
i=1

w
(1)
ij xi + w

(1)
0j

Each value a
(l)
j in the hidden and output layers l , l ∈ {2, . . . , L} is

computed from z
(l)
j using a differentiable, non-linear activation

function
a

(l)
j = f (l)

act

(
z

(l)
j

)
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Neural networks
Input layer linear combinations of x1, . . . , xD1 and w11, . . . ,wD1D2

z
(2)
j =

D1∑
i=1

w
(1)
ij xi + w

(1)
0j

Activation function: Differentiable, non-linear

a
(2)
j = f (2)

act

(
z

(2)
j

)
fact(·) function is usually a sigmoidal function or tanh
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Neural networks

Values a
(2)
j are then linearly combined in hidden layers:

z
(3)
k =

D2∑
j=1

w
(2)
jk a

(2)
j + w

(2)
0k

with k = 1, . . . ,DL describing the total number of outputs

Again, these values are transformed using a sufficient
transformation function fact to obtain the network outputs

f (3)
act (z

(3)
k )
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Neural networks

Combine these stages to achieve overall network function:

hk(−→x ,−→w ) = f (3)
act

 D2∑
j=1

w
(2)
jk f (2)

act

(
D1∑
i=1

w
(1)
ij xi + w

(1)
0j

)
+ w

(2)
0k


(Multiple hidden layers are added analogously)

We speak of Forward propagation since the network elements
are computed from ’left to right’

This is essentially a logistic regression problem where
appropriate features are learned in the first stage of the
network
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Neural networks
With linear activation functions of hidden units ⇒ Always find
equivalent network without hidden units
(Composition of successive linear transformations itself linear transformation)
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Neural networks
Number of hidden units < number of input or output units ⇒ not
all linear functions possible
(Information lost in dimensionality reduction at hidden units)
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Neural networks

Neural networks are Universal approximators1 2 3 4 5 6 7 8

⇒ 2-layer linear NN can approximate any continuous function

1
K. Funahashi: On the approximate realisation of continuous mappings by neural networks, Neural Networks,

2(3), 183-192, 1989
2

G. Cybenko: Approximation by superpositions of a sigmoidal function. Mathematics of control, signals and
systems, 2, 304-314, 1989

3
K. Hornik, M. Sinchcombe, H. White: Multilayer feed-forward networks are universal approximators. Neural

Networks, 2(5), 359-366, 1989
4

N.E. Cotter: The stone-Weierstrass theorem and its application to neural networks. IEEE Transactions on
Neural Networks 1(4), 290-295, 1990

5
Y. Ito: Representation of functions by superpositions of a step or sigmoid function and their applications to

neural network theory. Neural Networks 4(3), 385-394, 1991
6

K. Hornik: Approximation capabilities of multilayer feed forward networks: Neural Networks, 4(2), 251-257,
1991

7
Y.V. Kreinovich: Arbitrary non-linearity is sufficient to represent all functions by neural networks: a theorem.

Neural Networks 4(3), 381-383, 1991
8

B.D. Ripley: Pattern Recognition and Neural Networks. Cambridge University Press, 1996
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Neural networks
Remaining issue in neural networks

Find suitable parameters given a set of training data

Several learning approaches have been proposed
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Neural networks

Simple approach to determine network parameters: Minimise
sum-of-squared error function

Given a training set of samples −→xi with i ∈ {1, . . . ,N}
And corresponding targets −→yi
Minimise the error function

E (−→w ) =
1

2

N∑
i=1

(h(−→xi ,−→w )−−→yi )2
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Neural networks – Classification

2 classes C1 and C2

We consider a network with a single output

f (L)
act

(
z(L)

)
≡ 1

1 + e−z
(L)

Output interpreted as conditional probability P(C1|−→x )

Analogously, we have P(C2|−→x ) = 1− P(C1|−→x )

K classes C1, · · · , CK
Binary target variables yk ∈ {0, 1}
Network outputs are interpreted as hk(−→x ,−→w ) = P(yk = 1|−→x )

Machine Learning and Pervasive Computing
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Neural networks – backpropagation (Schematic)
Iterate until the error is sufficiently small

1 Choose training-pair and copy it
to the input layer

2 Propagate it through the
network

3 Calculate error between
computed and expected output

4 Propagate weights back into
network to calculate
hidden-layer error

5 Adapt weights to the error

u
(L)

u
(L)

v
(L)

w
(L-1)

Machine Learning and Pervasive Computing
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Neural networks – Cost function
Cost function for Logistic regression

E [W ] = − 1
m

[∑m
i=1 yi (log h(xi )) + (1− yi ) (log (1− h(xi )))

]
+ λ

2m

∑n
j=1 w

2
j

Cost function for Neural networks

E [W ] =

− 1

m

[
m∑
i=1

C∑
c=1

yij log(h(xi ))c + (1− yic) log(1− (h(xi ))c)

]

+
λ

2m

L−1∑
l=1

Dl∑
i=1

Dl+1∑
j=1

(w
(l)
ji )2

Machine Learning and Pervasive Computing



Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Neural networks – Cost function
Cost function for Logistic regression

E [W ] = − 1
m

[∑m
i=1 yi (log h(xi )) + (1− yi ) (log (1− h(xi )))

]
+ λ

2m

∑n
j=1 w

2
j

Cost function for Neural networks

E [W ] =

− 1

m

[
m∑
i=1

C∑
c=1

yij log(h(xi ))c + (1− yic) log(1− (h(xi ))c)

]

+
λ

2m

L−1∑
l=1

Dl∑
i=1

Dl+1∑
j=1

(w
(l)
ji )2

Machine Learning and Pervasive Computing



Introduction Perceptron algorithm Neural Networks Gradient calculation via backpropagation Neural Networks for dimensionality reduction

Neural networks – Cost function

E [W ] =

− 1

m

[
m∑
i=1

C∑
c=1

yic log(h(xi ))c + (1− yic) log(1− (h(xi ))c)

]

+
λ

2m

L−1∑
l=1

Dl∑
u=1

Dl+1∑
v=1

(w (l)
vu )2

m Number of training samples

C Number of classes (output units)

L Count of layers

Dl Number of units at layer l

One cost function for each respective output (class)
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Neural networks – Cost function

E [W ] = − 1
m

[∑m
i=1

∑C
c=1 yic log(h(xi ))c + (1− yic) log(1− (h(xi ))c)

]
+ λ

2m

∑L−1
l=1

∑Dl

u=1

∑Dl+1

v=1 (w
(l)
vu )2

Aim minimise E [W ] (min
W

E [W ])

Required ∂

∂w
(l)
vu

E [W ]

Backpropagation (effectively compute ∂

∂w
(l)
vu

E [W ])

δ
(l)
u Error of node j in layer l

Layer L δ
(L)
u = a

(L)
u − yu → δ(L) = a(L) − y

Layer l δ(l) =
(
W (l)

)T
δ(l+1) ◦ f ′act(z

(l))

( ◦ → Hadamard product (Element-wise multiplication))

( f ′act → Derivative of the activation function)
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Element-wise multiplication

Hadamard product

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 ◦
 b11 b12 b13

b21 b22 b23

b31 b32 b33

 =

 a11 b11 a12 b12 a13 b13

a21 b21 a22 b22 a23 b23

a31 b31 a32 b32 a33 b33
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Remarks
Initialisation of weights

wij have to be initialised randomly !

wij = 0||wij = wkl∀i , j , j , l ⇒ δ
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u will be identical ∀ u
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Example: Backpropagation learning
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Backpropagation is an effective way of calculating the gradient of
an ANN error function.

ANN error function

The ANN error function is composed from the sum of the error
functions for the individual inputs:

E (−→w ) =
N∑
i=1

En(−→w )

En =
1

2

∑
k

(yik − tik)2

→ In particular, it computes the gradient for each unit:

zj = h(aj); with aj =
∑
i

wjizi → (zi could be an input and zj an output)
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E (−→w ) =
N∑
i=1

En(−→w ); En =
1

2

∑
k

(yik − tik)2

In each unit, the ANN cost function computes

zj = h(aj); with aj =
∑
i

wjizi → (zi could be an input and zj an output)
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E (−→w ) =
N∑
i=1

En(−→w ); En =
1

2

∑
k

(yik − tik)2

zj = h(aj); with aj =
∑
i

wjizi

Compute the derivative of En:
En depends on wij only via the summed input aj → chain-rule:

∂En

∂wij
=
∂En

∂aj

∂aj
∂wji

δj ≡
∂En

∂wji

∂aj
∂wji

= zi
∂En

∂wji
= δjzi
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E (−→w ) =
N∑
i=1

En(−→w ); En =
1

2

∑
k

(yik − tik)2

zj = h(aj); with aj =
∑
i

wjizi

∂En

∂wij
=
∂En

∂aj

∂aj
∂wji

; δj ≡
∂En

∂aj
;

∂En

∂wji
= δjzi

For the output units, we have

δk = yk − tk
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E (−→w ) =
N∑
i=1

En(−→w ); En =
1

2

∑
k

(yik − tik)2

zj = h(aj); with aj =
∑
i

wjizi

∂En

∂wij
=
∂En

∂aj

∂aj
∂wji

; δj ≡
∂En

∂aj
;

∂En

∂wji
= δjzi

For the hidden units, use the chain rule again:

δj ≡
∂En

∂aj
=
∑
k

∂En

∂ak

∂ak
∂aj

→ δj = h′(aj)
∑
k

wkjδk
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Neural Networks for dimensionality reduction

Dimensionality reduction can be achieved with a multilayer
perceptron with

→ Same number D1 = DL of inputs as outputs

→ A single hidden layer with D2 < D1 nodes
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Neural Networks for dimensionality reduction

For linear activation functions, it can be shown that the error
function has a global minimum
Furthermore, at this minimum, the network projects the input
vectors onto the D2-dimensional sub-space spanned by the
first D2 principal components

→ Linear dimensionality reduction (Same as for PCA)
Machine Learning and Pervasive Computing
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Neural Networks for dimensionality reduction

With more than 2 layers and non-linear activation functions,
also non-linear dimensionality reduction is possible
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Questions?

Stephan Sigg
stephan.sigg@cs.uni-goettingen.de
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