Social Network:
 Information Cascades and Power-law Distribution

Advanced Computer Networks
Summer Semester 2012

o Examples

- Choosing the side in a war
- Side A 70\% chance to win
- Side B 30\% chance to win
- Choosing a restaurant in an unfamiliar town
- Restaurant A 0 guests
- Restaurant B 100 guest
- Your private information: B received good comments in Internet
- Looking into the sky
- New products, ideas, ...
o Influence of human behaviors and decisions
- Following the crowd
- Rich get richer

Information Cascades

Information Cascade

o An information cascade may occur when people make decisions sequentially

- Later people watching the actions of earlier people, and from these actions inferring something about what the earlier people know.
- In the restaurant example, when the first diners chose restaurant B, they conveyed information to later diners.
- A cascade then develops when people abandon their own information in favor of inferences based on earlier people's actions.
- Individuals in a cascade are imitating the behavior of others, but it is from rational inferences of limited information

Milgram et.al. [1969]

o Groups of people (from 1-15 people) stand on a street corner and stare up into the sky
o What happen to the passersby?

- If one person looking up, very few passersby stopped.
- If 5 person looking up, more passersby stopped, but most still ignored them
- If 15 people looking up, 45% of passersby stopped and also stared up into the sky
o Reference: Stanley Milgram, Leonard Bickman, and Lawrence Berkowitz. Note on the drawing power of crowds of dierent size. Journal of Personality and Social Psychology, 13(2):79\{82, October 1969.

Basic Ingredients

o Herding (Information Cascade)

- There is a decision to be made
- People make the decision sequentially
- Each person has some private information that helps guide the decision
- You can't directly observe private information of the others but can see what they do

A Simple Example

o Consider an urn with 3 marbles. It can be either:

- Majority-blue: 2 blue, 1 red
- Majority-red: 1 blue, 2 red
- Each person wants to best guess whether the urn is majority-blue or majority-red
o Experiment: One by one each person:
- Draws a marble
- Privately looks are the color and puts the marble back
- Publicly guesses whether the urn is majority-red or majority-blue
o You see all the guesses beforehand.
o How should you make your guess?
- What happens?
- \#1 person: Guess the color you draw from the urn.
- \#2 person: Guess the color you draw from the urn.
- If same color as $1^{\text {st }}$, then go with it
- If different, break the tie by doing with your own color
o \#3 person:
- If the two before made different guesses, go with your color
- Else, go with their guess (regardless your color) - cascade starts!
- \#4 person:
- Suppose the first two guesses BLUE, you go with BLUE (Since 3rd person always guesses BLUE)
- Everyone else guesses BLUE (regardless of their draw)

Revisit Probabilistic Theory

o Conditional probability of A given B
o Similarly

$$
\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]} .
$$

$$
\operatorname{Pr}[B \mid A]=\frac{\operatorname{Pr}[B \cap A]}{\operatorname{Pr}[A]}
$$

o Rewriting as: $\operatorname{Pr}[A \mid B] \cdot \operatorname{Pr}[B]=\operatorname{Pr}[A \cap B]=\operatorname{Pr}[B \mid A] \cdot \operatorname{Pr}[A]$
o Bayes' Rule (posterior probability):

$$
\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A] \cdot \operatorname{Pr}[B \mid A]}{\operatorname{Pr}[B]}
$$

Analysis

o \#1 follows her own color (private signal)

- Prior probabilities $\operatorname{Pr}[$ majority-blue $]=\operatorname{Pr}[$ majority-red $]=\frac{1}{2}$.
- For the two kinds of urns

$$
\operatorname{Pr}[\text { blue } \mid \text { majority-blue }]=\operatorname{Pr}[\text { red } \mid \text { majority-red }]=\frac{2}{3} \text {. }
$$

- If a blue marbie is arawn

$$
\begin{aligned}
& \operatorname{Pr}[\text { majority-blue } \mid \text { blue }]=\frac{\operatorname{Pr}[\text { majority-blue }] \cdot \operatorname{Pr}[\text { blue } \mid \text { majority-blue }]}{\operatorname{Pr}[\text { blue }]} . \\
& \operatorname{Pr}[\text { blue }]= \operatorname{Pr}[\text { majority-blue }] \cdot \operatorname{Pr}[\text { blue } \mid \text { majority-blue }]+ \\
& \operatorname{Pr}[\text { majority-red }] \cdot \operatorname{Pr}[\text { blue } \mid \text { majority-red }] \\
&= \frac{1}{2} \cdot \frac{2}{3}+\frac{1}{2} \cdot \frac{1}{3}=\frac{1}{2} .
\end{aligned}
$$

- Thus

$$
\operatorname{Pr}[\text { majority }- \text { blue } \mid \text { blue }]=\frac{\frac{1}{2} \cdot \frac{2}{3}}{\frac{1}{2}}=\frac{2}{3}
$$

o \#2 student
o \#2 knows \#1's color. So, \#2 gets 2 colors.

- If they are the same, decision is easy.
- If not, break the tie in favor of her own color
- \#3 follows majority signal
- Knows \#1, \#2 acted on their colors. So, \#3 gets 3 signals.
- If \#1 and \#2 made opposite decisions, \#3 goes with her own color.
- If \#1 and \#2 made same choice, \#3 follows then (Her decision conveyed no info. Cascade has started!)
$\operatorname{Pr}[$ majority - blue \mid blue, blue, red $]=$?
$\operatorname{Pr}[$ majority - blue|blue, blue, red $]=$?
- According to Bayes' Rule
$\operatorname{Pr}[$ majority-blue \mid blue, blue, red $]=\frac{\operatorname{Pr}[\text { majority-blue }] \cdot \operatorname{Pr}[\text { blue, blue, red } \mid \text { majority-blue }]}{\operatorname{Pr}[\text { blue, blue, red }]}$.
o Since
$\operatorname{Pr}[$ blue, blue, red \mid majority-blue $]=\frac{2}{3} \cdot \frac{2}{3} \cdot \frac{1}{3}=\frac{4}{27}$.
$\operatorname{Pr}[$ blue, blue, red $]=\operatorname{Pr}[$ majority-blue $] \cdot \operatorname{Pr}[$ blue, blue, red \mid majority-blue $]+$ $\operatorname{Pr}[$ majority-red $] \cdot \operatorname{Pr}[$ blue, blue, red \mid majority-red $]$
$=\frac{1}{2} \cdot \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{1}{3}+\frac{1}{2} \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{2}{3}=\frac{6}{54}=\frac{1}{9}$.
o So $\operatorname{Pr}[$ majority-blue \mid blue, blue, red $]=\frac{\frac{4}{27} \cdot \frac{1}{2}}{\frac{1}{9}}=\frac{2}{3}$.
o Cascade begins when two consecutive students guess the same

Lessons from Cascades

o Cascades can be wrong

- A cascade of acceptances will start when the first two people happen to get high signals, even though it is the wrong choice for the population
o Cascades can be based on very little information.
- Since people ignore their private information once a cascade starts, only the pre-cascade information influences the behavior of the population.
- Cascades can be fragile
- Suppose the first two guess blue
- Student \#1 to \#100 guess blue
- If student \#99 and \#100 draw red and show then in public
- Student \#101 now has 4 pieces of information, and she guesses based on her own color
- Cascade is broken!

Power-law Distribution

Questions

- How many neighbors does a node have? (degree)
o How far apart are nodes in the network? (distance)
- How close a set of nodes connect with each other? (clustering coefficient)

Degree Distribution

o Degree distribution $P(k)$

- Probability that a randomly chosen nodes has degree k
- N_{k} : number of nodes with degree k
- $P(k)=N_{k} / N$

o Popularity of nodes in social networks
- Imbalance
- 20% of web pages receives 80% visits
- Celebrities in Twitter have millions of fans
- A few rich people own a large amount of wealth
o Node degree distribution
- What fraction of all nodes have degree k ? $P(k)=$?
- Normal distribution? - for random graph $P(k)=$ exponential function of $-k$

Guess: Normal distribution

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

Real network: Power-law

o Phenomenon: popularity seems to exhibit extreme imbalances
o Observations:

- The fraction of telephone numbers that receive k calls per day is roughly proportional to $1 / k^{\wedge} 2$;
- The fraction of books that are bought by k people is roughly proportional to $1 / k^{\wedge} 3$;
- The fraction of scientific papers that receive k citations in total is roughly proportional to $1 / \mathrm{k}^{\wedge} 3$
- => The number of monthly downloads for each song at a large on-line music site is proportional to $1 / k^{\wedge} c$ for some constant c
o Power-law distribution
- Let $\mathrm{f}(\mathrm{k})$ be the fraction of items have value k

$$
f(k)=z k^{-\alpha}
$$

where α and z are constants
o Taking logarithms of both sides

$$
\log f(k)=\log z-\alpha \log k
$$

o Testing for power-law distribution

- If we draw k and $f(k)$ in "log-log" scale, it shows a straight line

Node Degree of Websites

Estimating power-Law Exponent

o Estimating α ? $\quad \log f(k)=\log z-\alpha \log k$
o Simple method: fit a line on log-log axis

$$
\min _{\alpha}(\log (y)-\alpha \log (x))^{2}
$$

o For power-law distribution $f(k)=z k^{-\alpha}$
o Estimating the normalizing constant

$$
P(x)=z x^{-\alpha}
$$

$$
z=?
$$

o According to definition

$$
P(x) \text { is a distribution: } \int P(x) d x=1
$$

o Thus, let

$$
1=\int_{x_{\min }}^{\infty} P(x) d x=z \int_{x_{m}}^{\infty} x^{-\alpha} d x
$$

o z can be obtained by solving the above equation

- Power-law degree exponent is typically $2<\alpha<\mathbf{3}$
- Web graph:
- $\alpha_{\text {in }}=2.1, \alpha_{\text {out }}=2.4$ [Broder et al. 00]
- Autonomous systems:
- $\alpha=2.4$ [Faloutsos ${ }^{3}$, 99]
- Actor-collaborations:
- $\alpha=2.3$ [Barabasi-Albert 00]
- Citations to papers:
- $\alpha \approx 3$ [Redner 98]
- Online social networks:
- $\alpha \approx 2$ [Leskovec et al. 07]

Power-laws Are Everywhere

o Pareto, 1897 - Wealth distribution
o Lotka, Alfred J. 1926-The frequency of publications by authors in a given field
o Zipf 1940s -Word frequency
o Simon 1950s - City populations
o Holger Ebel 2002- Email Network
o Who-talks-to-whom network
o Number of friends in Facebook
o ...

Rich Get Richer Model

o New nodes are more likely to link to nodes that already have high degree
o Power-laws arise from "Rich get richer"

- We can provide a simple power-law models from consequences of individual decision-making
- We assume simply that people have a tendency to copy the decisions of people who act before them

A Simple Model

o A simple model for the creation of links among Web pages

- Pages are created in order, and named 1; 2; 3; ...;N.
- When page j is created, it produces a link to an earlier Web page i according to:
- 1) With prob. $p(0<p<1)$, j links to i chosen uniformly at random (from among all earlier nodes)
- 2) With prob. 1-p, node j chooses node i uniformly at random and links to a node i points to.
- Note: this is same as saying, with prob. 1-p, node j links to node u with prob. proportional to the degree of u
o The model specifies a randomized process that run for N steps (as the N pages are created one at a time)
o Question: can we determine the expected number of pages with k in-links at the end of the process? (Or analyze the distribution of this quantity?)
o Definition: the number of in-links to a node j at a time step $\mathrm{t}(\mathrm{t} \geq \mathrm{j})$ is a random variable $X_{j}(t)$
o Facts:
- Initial condition: Since node j starts with no in-links when it is first created at time j , so $\quad X_{j}(j)=0$
- The expected change to X_{j} over time
- In step t+1, node j gains an in-link if and only if the link from the newly created node $t+1$ points to it
- With prob. p, node $t+1$ point to the previous t nodes at random, thus the prob. of linking to node j is p / t
- With prob. (1-p), node $t+1$ links to node j with probability Xj(t)/t
- So the overall probability that node $\mathrm{t}+1$ links to node j is

$$
\frac{p}{t}+\frac{(1-p) X_{j}(t)}{t}
$$

o in step t+1, the probability of a new link

$$
\frac{p}{t}+\frac{(1-p) X_{j}(t)}{t}
$$

o How to calculate $X_{j}(t)$?
o Approximation

- Treat it as a deterministic continuous function $x_{j}(t)$
- From step t to step t+1 can be viewed as the differential of the function, thus

$$
\frac{d x_{j}}{d t}=\frac{p}{t}+\frac{(1-p) x_{j}}{t}
$$

o Solving the differential equation

$$
\frac{d x_{j}}{d t}=\frac{p}{t}+\frac{(1-p) x_{j}}{t}
$$

o Let $q=1-p$, rewriting it as

$$
\frac{1}{p+q x_{j}} \frac{d x_{j}}{d t}=\frac{1}{t}
$$

o Integrating both sides

$$
\ln \left(p+q x_{j}\right)=q \ln t+c
$$

o Applying the initial condition $x_{j}(j)=0$ yields

$$
x_{j}(t)=\frac{1}{q}\left(\frac{p}{j^{q}} \cdot t^{q}-p\right)=\frac{p}{q}\left[\left(\frac{t}{j}\right)^{q}-1\right]
$$

$$
x_{j}(t)=\frac{1}{q}\left(\frac{p}{j^{q}} \cdot t^{q}-p\right)=\frac{p}{q}\left[\left(\frac{t}{j}\right)^{q}-1\right]
$$

o $x_{j}(t)$ is the degree of node j at time t
o What is the fraction of nodes whose degree $\geq k$?

- If a node's dearee no smaller than k, it satisfies

$$
x_{j}(t)=\frac{p}{q}\left[\left(\frac{t}{j}\right)^{q}-1\right] \geq k,
$$

- Solving the inequality, we have $j \leq t\left[\frac{q}{p} \cdot k+1\right]$
- Since there are t nodes at time t. the fraction of nodes is:

$$
\frac{1}{t} \cdot t\left[\frac{q}{p} \cdot k+1\right]^{-1 / q}=\left[\frac{q}{p} \cdot k+1\right]^{-1 / q}
$$

o What is the fraction of nodes with degree exactly k?

- Take derivative of the equation, we get $\frac{1}{q} \frac{q}{p}\left[\frac{q}{p} \cdot k+1\right]^{-1-1 / q}$
$\substack { \text { o } \\ \begin{subarray}{c}{0 \\ w \in R v e{ \text { o } \\ \begin{subarray} { c } { 0 \\ w \in R v e } } \end{subarray}$ So it is a power-law distribution with exponent $1+\frac{1}{q}=1+\frac{1}{1-p}$

Summary

o Information cascades and rich get richer may explain many social behaviors
o Rumors
o New technology

- Fashions
- Keeping your money or not in a stock market
o Voting for popular candidates
- Best selling books, music
- Riots, protests, strikes

