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Inductive Logic Programming (ILP)

How do we describe our world such that a computer system
may take correct decisions from observations?

→ Inductive reasoning
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Inductive Logic Programming (ILP)

ILP can be seen as the reverse of deduction:

Deduction
P1 All men are mortal
P2 Socrates is a man

DC Socrates is mortal
DC must be true

Inductive conclusion
P1 All men are mortal
P2 Socrates is mortal

IC Socrates is a man
IC can be true

→ In inductive reasoning, starting from facts, we attempt to
derive a theory from facts

Example
P1 After rain the ground is wet
P2 Today, the ground is wet

IC It rained today
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Inductive Logic Programming (ILP)

ILP makes a distinction between three types of knowledge:

Knowledge
Observations

Hypothesis

With increasing count of knowledge and observations, also the
possible valid hypothesis rapidly increase

Induction
K All men are mortal
O Socrates is mortal

H Socrates is a man

Induction example

K Light on = meeting
O Currently, light is on

H A meeting is ongoing
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Syntactical – Rule-based learning

Description of Situation by formal Symbols and Rules

Description of a (agreed on?) world view

Pro Combination of rules and identification of loops and
impossible conditions feasible

Con Complex with more elaborate situations
Extension or merge of rule sets typically not possible without
contradictions
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Rule markup language

Rule ML

Markup language to express and share rules in XML notation

Designed for the interchange of various kinds of web-rules

Machine Learning and Pervasive Computing



Inductive Logic Programming Rule-based learning RuleML Conclusion

Rule markup language
Language items

<Atom> Atomic formula

<Implies> Logical Implication of multiple Atoms

<And> Logical and

<Or> Logical or

<Xor> Logical xor

<Rel> Relation

<Ind> Individual constants

<Var> Variable

Relations can have a variable and finite number of arguments
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Rule markup language

Rule Markup Language Language for publishing and sharing rules

Hierarchy of rule-sub-languages (XML,
RDF, XSLT, OWL)

Example A meeting room was occupied by min
5 people for the last 10 minutes

Atom

Rel Var Ind Ind
meeting roomoccupied min 5 people last 10 minutes
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Rule markup language

Further conditions with conditional clauses

<if> if-then

<then> .

<if> if-do

<do> .

<on> on-do

<do> .

<on> on-if-do

<if>

<do>
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Rule markup language

Logical combination of conditions

A Meeting is taking place in a meeting room when it was
occupied by min 5 people for the last 10 minutes and the light
is on.

Atom

Rel Var
meeting roommeeting

Atom

Rel Var Ind Ind
meeting roomoccupied min 5 people last 10 minutes

Implies

head body

Atom

Rel Var
lighton

And
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Rule markup language
Further rules

<Assert> Assertion

<Neg> ¬
<Exists> ∃
<Forall> ∀
<Equal> =

¬ ∃ x : ∀ y : x = y
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Ontologies

⇒ Apart from rules, a ground truth is required to describe basic
facts

Ontologies are a way to describe such ground truth and relation
among facts

Ontologies

An ontology is a formal naming and definition of the types,
properties, and relationships of fundamental entities in a particular
domain
The features of the ontology model should closely resemble the
real world
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Ontologies

Ontologies – components

Individuals instances or objects

Classes sets, collections, concepts, kinds of things

Attributes aspects, properties, features, characteristics, or
parameters of objects

Relations between classes and individuals

Function terms complex structures formed from certain relations

Restrictions descriptions of what must be true in order for some
assertion to be accepted as input

Rules if-then sentence

Axioms assertions (including rules) in a logical form

Events changing of attributes or relations
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Ontologies

Ontologies can be created by ontology languages such as the
Web Ontology Language (OWL).
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Ontologies
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Ontologies
Multiple ontologies for the same entity
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Semantic Web Rule Language
For further reading: SWRL

SWRL is a Semantic Web Rule Language combining OWL and
RuleML

Extends RuleML with ontology axioms:
C(x), P(x,y), sameAs(x,y), differentFrom(x,y), builtIn(r,x,...)

C OWL description or data range,

P OWL property

r built-in relation,

x and y variable or OWL individuals or OWL data values
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Recognition of patterns

Where Rule-based systems are beneficial

Rule-based systems well suited for limited-size, clearly defined
domains with well understood properties
(e.g. detecting high-level activities such as cooking, or other
compositions of sequences of short tasks)

Problem: → large problem spaces (might require tremendous
amount of rules)

→ Noisy input (e.g. from sensors) requires
approximative boundaries
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Simple machine learning scheme utilising rules
Decision tree classifier

tbc next week ...
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Questions?

Stephan Sigg
stephan.sigg@cs.uni-goettingen.de
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