Machine Learning and Pervasive Computing

Stephan Sigg

15.04.2015

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Overview and Structure

- 13.04.2015 Organisation
- 13.04.2015 Introduction
- 20.04.2015 Rule-based learning
- 27.04.2015 Decision Trees
- 04.05.2015 A simple Supervised learning algorithm
- 11.05.2015 -
- **18.05.2015** Excursion: Avoiding local optima with random search 25.05.2015 –
- 01.06.2015 k-Nearest Neighbour methods
- 08.06.2015 High dimensional data
- 15.06.2015 Artificial Neural Networks
- 22.06.2015 Probabilistic models
- 29.06.2015 Topic models
- 06.07.2015 Unsupervised learning
- 13.07.2015 Anomaly detection, Online learning, Recom. systems

Machine Learning and Pervasive Computing

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

RuleML

Outline

Inductive Logic Programming

Rule-based learning

RuleML

▲□▶▲圖▶▲圖▶▲圖▶ 圖 ろ∢?

How do we describe our world such that a computer system may take correct decisions from observations?

 \rightarrow Inductive reasoning

・ロ ト ・ () ト ・ () ト ・ () ト ・ () ト ・ () ト ・ () へ () ハ () ハ () ハ () ハ () ハ () ハ () ハ () ハ ()) ハ () ハ () ハ () ハ ()) ハ () ハ () ハ () ハ ()) ハ () ハ () ハ ()) ハ () ハ () ハ ()) ハ () ハ () ハ ()) ハ ()) ハ () ハ ()) ハ ()) ハ ()) ハ ()) ハ ()) ハ ())) ()))

ILP can be seen as the reverse of deduction:

Ad	117	ct	IO	h .
Eu	u		IUI	

- P₁ All men are mortal
- P₂ Socrates is a man
- DC Socrates is mortal

DC must be true

Inductive conclusion			
P ₁ All men are mortal			
P ₂ Socrates is mortal			
IC Socrates is a man			
IC can be true			

・ロト・日本・日本・日本・日本・

ILP can be seen as the reverse of deduction:

Deduction	Inductive conclusion	
P_1 All men are mortal	P_1 All men are mortal	
P ₂ Socrates is a man	P ₂ Socrates is mortal	
DC Socrates is mortal	IC Socrates is a man	
DC <u>must</u> be true	IC <u>can</u> be true	

 $\rightarrow\,$ In inductive reasoning, starting from facts, we attempt to derive a theory from facts

ILP can be seen as the reverse of deduction:

Deduction	Inductive conclusion	
P ₁ All men are mortal	P ₁ All men are mortal	
P ₂ Socrates is a man	P ₂ Socrates is mortal	
DC Socrates is mortal	IC Socrates is a man	
DC <u>must</u> be true	IC <u>can</u> be true	

 $\rightarrow\,$ In inductive reasoning, starting from facts, we attempt to derive a theory from facts

Example

- P_1 After rain the ground is wet
- P_2 Today, the ground is wet
- IC It rained today

Machine Learning and Pervasive Computing

ILP makes a distinction between three types of knowledge: Knowledge Observations Hypothesis

With increasing count of knowledge and observations, also the possible valid hypothesis rapidly increase

◆ロ → ◆ 部 → ◆ 書 → ▲ 書 → ● ● の へ ? Machine Learning and Pervasive Computing

ILP makes a distinction between three types of knowledge: Knowledge Observations

Hypothesis

With increasing count of knowledge and observations, also the possible valid hypothesis rapidly increase

Induction

- K All men are mortal
- O Socrates is mortal
- H Socrates is a man

Induction example

- K Light on = meeting
- O Currently, light is on
- H A meeting is ongoing

3

RuleML

Conclusion

Outline

Inductive Logic Programming

Rule-based learning

RuleML

- ▲日 > ▲ 国 > ▲ 国 > ▲ 国 > ▲ 日 > ◆ ④ > ▲ 日 >

Syntactical – Rule-based learning

Description of Situation by formal Symbols and Rules Description of a (agreed on?) world view

Pro Combination of rules and identification of loops and impossible conditions feasible

- Con Complex with more elaborate situations
 - Extension or merge of rule sets typically not possible without contradictions

Machine Learning and Pervasive Computing

イロト 不得 とくほと くほとう ほ

Conclusion

Outline

Inductive Logic Programming

Rule-based learning

RuleML

・ 日 ・ ・ 聞 ト ・ 言 ト ・ 言 ・ うへぐ

Rule markup language

Rule ML

- Markup language to express and share rules in XML notation
- Designed for the interchange of various kinds of web-rules

Rule markup language

Language items

<Atom> Atomic formula

<Implies> Logical Implication of multiple Atoms

 $<\!\!\mathsf{And}\!\!>$ Logical and

<Or> Logical or

<Xor> Logical xor

 $<\!\!\text{Rel}\!>$ Relation

<Ind> Individual constants

<Var>> Variable

Relations can have a variable and finite number of arguments

きょう かい いいちょう ふしゃ ふしゃ

RuleML

Rule markup language

Rule Markup Language Language for publishing and sharing rules

Hierarchy of rule-sub-languages (XML, RDF, XSLT, OWL) Example A meeting room was occupied by min

5 people for the last 10 minutes

```
<Atom>

<Rel> occupied </Rel>

<Var> meeting room </Var>

<Ind> min 5 persons </Ind>

<Ind> last 10 minutes </Ind>

</Atom>
```


- ▲ ロ ト ▲ 国 ト ▲ 国 ト → 国 - シッペー

Rule markup language

Further conditions with conditional clauses

```
<if> if-then
<then> .
   <if> if-do
  < do > .
  <on> on-do
  < do > .
  <on> on-if-do
   \langle if \rangle
  < do >
```

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで

(RuleML)

Further conditions with conditional clauses

<if> if-then

・ロ ト ・ () ト ・ () ト ・ () ト ・ () ト ・ () ト ・ () へ () ハ () ハ () ハ () ハ () ハ () ハ () ハ () ハ ()) ハ () ハ () ハ () ハ ()) ハ () ハ () ハ () ハ ()) ハ () ハ () ハ ()) ハ () ハ () ハ ()) ハ () ハ () ハ ()) ハ ()) ハ () ハ ()) ハ ()) ハ ()) ハ ()) ハ ()) ハ ())) ()))

Rule markup language

- Logical combination of conditions
 - A Meeting is taking place in a meeting room when it was occupied by min 5 people for the last 10 minutes and the light is on.

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ● Machine Learning and Pervasive Computing

Rule markup language

Further rules

	<assert></assert>
	<neg></neg>
	<exists></exists>
<assert> Assertion</assert>	<var>x</var>
<neg> ¬</neg>	<forall></forall>
	<var>y</var>
<exists> =</exists>	<equal></equal>
$<$ Forall $> \forall$	<var>x</var>
$\langle Equal \rangle =$	<var>y</var>
7	
$\neg \exists x : \lor y : x = y$	

RuleML

Ontologies

\Rightarrow Apart from rules, a ground truth is required to describe basic facts

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへ⊙

RuleML

Ontologies

⇒ Apart from rules, a ground truth is required to describe basic facts

Ontologies are a way to describe such ground truth and relation among facts

Ontologies

An ontology is a formal naming and definition of the types, properties, and relationships of fundamental entities in a particular domain The features of the ontology model should closely resemble the real world

Machine Learning and Pervasive Computing

イロト 不得 トイヨト イヨト 二日

Ontologies

Ontologies – components

Individuals instances or objects Classes sets, collections, concepts, kinds of things Attributes aspects, properties, features, characteristics, or

parameters of objects

Relations between classes and individuals

Function terms complex structures formed from certain relations

Restrictions descriptions of what must be true in order for some assertion to be accepted as input

Rules if-then sentence

- Axioms assertions (including rules) in a logical form
- Events changing of attributes or relations

Ontologies

Ontologies can be created by ontology languages such as the Web Ontology Language (OWL).

・ロト・日本・モト・モト・モー つんの

Ontologies

Ontologies

Multiple ontologies for the same entity

Machine Learning and Pervasive Computing

(ロ) (四) (E) (E) (E)

イロト 不得 トイヨト イヨト 二日

Semantic Web Rule Language

For further reading: SWRL

 SWRL is a Semantic Web Rule Language combining OWL and RuleML

Extends RuleML with ontology axioms: C(x), P(x,y), sameAs(x,y), differentFrom(x,y), builtln(r,x,...)

- C OWL description or data range,
- P OWL property
- r built-in relation,

 \times and y variable or OWL individuals or OWL data values

Recognition of patterns

Where Rule-based systems are beneficial

Rule-based systems well suited for <u>limited-size</u>, <u>clearly defined</u> domains with <u>well understood</u> properties

(e.g. detecting high-level activities such as cooking, or other compositions of sequences of short tasks)

Recognition of patterns

Where Rule-based systems are beneficial

Rule-based systems well suited for <u>limited-size</u>, <u>clearly defined</u> domains with <u>well understood</u> properties

(e.g. detecting high-level activities such as cooking, or other compositions of sequences of short tasks)

- Problem: \rightarrow large problem spaces (might require tremendous amount of rules)
 - \rightarrow Noisy input (e.g. from sensors) requires approximative boundaries

Machine Learning and Pervasive Computing

→ ∃ → → ∃ →

< 47 →

(RuleML)

Simple machine learning scheme utilising rules

Decision tree classifier

tbc next week ...

Machine Learning and Pervasive Computing

RuleML

Outline

Inductive Logic Programming

Rule-based learning

RuleML

- * ロ * * @ * * 目 * * 目 * うへで

Questions?

Stephan Sigg stephan.sigg@cs.uni-goettingen.de

Conclusion

Literature

- C.M. Bishop: Pattern recognition and machine learning, Springer, 2007.
- R.O. Duda, P.E. Hart, D.G. Stork: Pattern Classification, Wiley, 2001.

Machine Learning and Pervasive Computing