Telematics Homework \#5

Niklas Neumann
26 November 2009

Dijkstra's algorithm

- Given the following network, use Dijkstra's algorithm to find the least cost paths from node u. Please provide a table showing the steps of the algorithm, a graph showing the resulting shortest-path tree from u and the final forwarding table of u.

3

Dijkstra's algorithm (cont'd)

Step	N^{\prime}	$D(v), p(v)$	$D(w), p(w)$	$D(x), p(x)$	$D(y), p(y)$	$D(z), p(z)$

Dijkstra's algorithm (cont'd)

Step	N^{\prime}	$D(v), p(v)$	$D(w), p(w)$	$D(x), p(x)$	$D(y), p(y)$	$D(z), p(z)$
0	u	$3, u$	∞	∞	$3, u$	$2, u$
1	uz	$3, u$	$6, z$	∞	$3, u$	
2	uzy	$3, u$	$5, y$	$8, y$		
3	uzyv		$5, y$	$6, w$		
4	uzyvw			$6, w$		
5	uzyvwx					

Dijkstra's algorithm (cont’d)

Dest.	Link.
z	z
y	y
v	v
w	y
x	y

Distance Vector algorithm

- Given the following network, use the Distance Vector algorithm to find the least cost paths for all nodes. Fill the provided tables and indicate with arrows between the tables when a node sends a distance vector to another node.

Distance Vector algorithm

Node w		cost to			
		W	X	y	z
E	w				
	X				
	y				
	z				

Node w		cost to			
		W	x	y	z
E	w				
	x				
	y				
	z				

Node	cost to				
	w	x	y	z	
w	w				
	x				
	y				
	z				

Node w		cost to			
		w	x	y	z
E	w				
	x				
	y				
	z				

Node \mathbf{x}		cost to			
		w	X	y	z
E	W				
	x				
	y				
	z				

Node z	cost to				
	w	x	y	z	
w					
	x				
	z				

Distance Vector algorithm

Count-to-infinity problem

- Q: Explain the count-to-infinity problem using a simple example. How can this problem be avoided?
- Consider the following example:

- c computes that it can reach a in 5 hops via b and sends DV $(\mathrm{a}, 5)$ to b
- Now the cost of the a-b changes to 30
- b recomputes its DV to a
- Using the (old) DV $(a, 5)$ from c it computes the DV ($\mathrm{a}, 6$) and sends it to c
- c recomputes its DV to a
- Using the DV from b it computes the DV $(a, 7)$ and sends it to b

Count-to-infinity problem

 (con't)- The last two steps repeat with an increasing DV to reach a until b sends the DV $(a, 20)$
- c recomputes its DV to a
- Using the DV from b it determies that DV $(a, 20)$ using the link c-a is less costly and sends it back to b
- b recomputes ist DV to a
- Using the DV $(\mathrm{a}, 20)$ from c it computes the DV $(a, 21)$ and sends it to c
- Now the system is finally stable again

Count-to-infinity problem (con't)

- The count-to-infinitiy problem can be avoided using the poisoned reverse technique.
- Using the poisoned reverse technique, a router will advertise a distance as infite to another router if that router is on the advertised path
- In the example, router c will advertise it has an infinite cost to reach router a in its DV to router b as long as router c will route its own packets to a via c

Hierarchical routing

- Q: Explain the concept of hierarchical routing. Why is it needed?
- Hierarchical routing aggregates networks into Autonomous Systems (AS)
- AS can run different intra-AS routing protocols
- AS are connected via gateway routers running an inter-AS routing protocol
- HR is needed because flat routing ...
- ... does not scale
- --- does not consider different administrative domains

RIP

- Q: What is RIP and what metric does it use?
- The Routing Information Protocol (RIP) is a simple routing protocol which ...
- ... distributes distance vectors
- ... using RIP advertisement messages
- ... which use a simple hop count as metric

Routing policies

- Q: How are routing policies used in BGP. Give one example.
- Routing policies determine ...
- ... which BGP advertisements to regard
- ... which routes to advertise
- Example
- AS x is connected to AS y and AS z
- Policy : AS x does not want AS y to route traffic via AS x to AS z
- Therefore, AS x does not advertise any route to reach AS z to AS y

Intra- vs. inter-AS routing

- Q: Why are different inter-AS and intra-AS protocols used in the Internet?
- Different policies
- Inter-AS: control over how (foreign) traffic is routed via the own network
- Intra-AS: control over how traffic is routed within the the own network
- Scale
- Hierarchical routing saves table size, reduced update traffic

Intra- vs. inter-AS routing

- Performance
- Intra-AS: can focus on performance
- Inter-AS: policy may dominate over performance

Thank you

Any questions?

