Exercise 4

Osamah Barakat

Osamah.Barakat@cs.unigoettingen.de

Q1

.Why is the Internet Protocol (IP) described as the "narrow waist" of the network stack?

IP as Narrow Waist

-,IP over anything, anything over IP"
.Single common tie between multiple protocols
.Innovation in upper/lower layers

.Makes changes to IP difficult (IPv6 ...)

Q2

-What are the two key functions of the network layer, that each router performs? Please explain the difference between them.

Key Functionalities of a Router

.Forwarding: move packets from router's input to appropriate router output
.Routing: determine route taken by packets from source to dest.
-A routing protocol determines the forwarding table

Q3

.Assume you have a 3,000 byte long datagram which needs to be fragmented for a 1,400 bytes MTU.

IP Datagram Fragmentation

-3000 byte datagram, 1400byte MTU.
-One datagram is fragmented into multiple smaller datagrams...

Datagram No.	Length	Frag. Flag	Offset $=$ (MTU-Header data / 8)
1	1400 $(1380+20)$	1	0
2	1400 $(1380+20)$	1	172
3	240 $(220+20)$	0	344
4			

Q4

.Convert the following IP addresses into their binary notion:
.192.168.0.1

IP Address Conversion (Decimal to Binary)
 -TIP: Make yourself a table:

Power	$2^{\wedge 7}$	$2^{\wedge} 6$	$2^{\wedge 5}$	$2^{\wedge 4}$	$2^{\wedge} 3$	$2^{\wedge} 2$	$2^{\wedge 1}$	$2^{\wedge 0}$
Value	128	64	32	16	8	4	2	1
Rest								
Bit								

oFor each octet:
。Put octet number into first „rest" cell
-Bit = (value >= rest ? $1: 0$)
-Restnext = Restprev - Bitprev x Valueprev
-Rinse and Repeat

IP Address Conversion (Example)

oFirst octet of 192.168.0.1

Power	$2^{\wedge} 7$	$2^{\wedge} 6$	$2^{\wedge} 5$	$2^{\wedge} 4$	$2^{\wedge} 3$	$2^{\wedge} 2$	$2^{\wedge} 1$	$2^{\wedge} 0$
Value	128	64	32	16	8	4	2	1
Rest	64	0	0	0	0	2	0	0
Bit	1	1	0	0	0	0	0	0

Converting IP Addresses

.192.168.0.1
.11000000101010000000000000000001

Q5

.Convert the following IP address into it's decimal notion
. 11100011100001100000111110101010

IP Address Conversion (Binary to Decimal)

-Make yourself a table:

Power	$2^{\wedge} 7$	$2^{\wedge} 6$	$2^{\wedge} 5$	$2^{\wedge} 4$	$2^{\wedge} 3$	$2^{\wedge} 2$	$2^{\wedge} 1$	$2^{\wedge} 0$
Value	128	64	32	16	8	4	2	1
Bit								
Sum								

oFor each octet:
.Fill the "Bit" row with the bits of the octet
-Fill the sum row:
Sumnext $=$ Sumprev + Bitprev x Valueprev

IP Address Conversion (Binary to Decimal)

oOctet 11100011:

Power	$2^{\wedge} 7$	$2^{\wedge} 6$	$2^{\wedge} 5$	$2^{\wedge} 4$	$2^{\wedge} 3$	$2^{\wedge} 2$	$2^{\wedge 1}$	$2^{\wedge} 0$
Value	128	64	32	16	8	4	2	1
Bit	1	1	1	0	0	0	1	1
Sum	128	192	224	224	224	224	226	227

-11100011100001100000111110101010 .227.134.15.170

Q6

.A provider has been assigned the network 128.30.0.0/23 and wants to divide it among three customers. Customer A needs to accommodate up to 220 hosts, customer B needs to accommodate up to 110 hosts and customer C needs to accommodate up to 80 hosts. Please fill the following table with the details of the subnetworks that the provider can create to fit its customers' needs.

Subnet calculations

-Subnet calculations are used to break a given network into smaller pieces
-A (sub-) network mask shows how many bits of an IP address denote the network
-Decimal: /17
-Binary: 11111111.11111111.10000000.00000000
oHexadecimal: 255.255.128.0

Subnet calculations (Example)

oGiven network: 128.30.0.0/17
-Wanted: Four sub networks
oFirst step: Find new subnet mask
-To address four networks we need at least two bits
($2^{\wedge} 2=4$).
-The new subnet mask is $17+2=19$
-Second step: Find new network addresses (see next slide)
-Third step: Calculate data for new networks (see homework)

Subnet calculations (example)

New netmask: 19 (= 255.255 .224 .0) 11111111.11111111.11100000.00000000
=> New network 1: 128.30.0.0/19
10000000.00011110.00000000.00000000
=> New network 2: 128.30.32.0/19
10000000.00011110.00100000.00000000
=> New network 3: 128.30.64.0/19
10000000.00011110.01000000.00000000
=> New network 4: 128.30.96.0/19
10000000.00011110.01100000.00000000

Number of hosts: $2^{13}-2=8,190$

Subnet calculation (homework)

A provider has been assigned the network 128.30.0.0/23 and wants to divide it among three customers. Customer A needs to accommodate up to 220 hosts, customer B needs to accommodate up to 110 hosts and customer C needs to accommodate up to 80 hosts. Please fill the following table with the details of the subnetworks that the provider can create to fit its customers' needs.

Subnet No.	Network Address	Netmask	Host Range	No. of Hosts
1 Cust. A	$128.30 .0 .0 / 24$	255.255 .255 .0	$128.30 .0 .1-$	254
2	$128.30 .1 .0 / 25$	255.255 .255 .128	128.30 .0 .254	
Cust B			$128.30 .1 .1-$	126
3	$128.30 .1 .128 / 25$	255.255 .255 .128	$128.30 .1 .129-$	126
Cust C			128.30 .1 .254	

Q7

-Consider IP addresses: How does a host get an IP address? How does a network get the subnet part of an IP address? How does a provider get a block of IP addresses? What is the principle behind these procedures?

IP Address Allocation - Host

.DHCP

.Dynamically gets an IP address on joining the network
.Allows reuse of addresses (address only reserved while online)
.Protocol: DHCP discover \rightarrow offer \rightarrow request \rightarrow ack
.More details: see lecture slides

IP Address Allocation - Network

-Allocation of a portion of the providers ISP address space
.e.g., provider net 200.23.16.0/20
.Possible allocated subnet: 200.23.30.0/23

IP Address Allocation - Provider

. ICANN (Internet Corporation for Assigned Names and Numbers)
.Global allocation of addresses to ISPs
.ISPs then reallocate their addresses to subnets/customers (see previous slides)
.However: Shortage of IPv4 addresses \rightarrow Most blocks occupied

Q7

.What problem is tackled by Network Address
Translation (NAT)? Please briefly describe what NAT does.

Network Address Translation (NAT)

.IPv4: Address shortage
.NAT: One network (of an arbitrary number of hosts) has only one IP address (NAT enabled router) that is accessible from the internet
.The remaining hosts are addressed internally
.Use port numbers to decide which host the datagram is destined to, mapping inside NAT table
.NAT is often considered a „dirty fix" to the address shortage issue (\rightarrow IPv6)

Q8

.Consider IPv6 What are the main differences between IPv4 and IPv6? What are two approaches towards the transition between IPv4 and IPv6?

IPv4 vs IPv6 - Differences

-Address space: IPv4 2^32, IPv6 2^128
.IPv6: Fixed header length, additional information needs to be stored in additional headers
.IPv6: No packet fragmentation supported, fragmentation is moved to the sending host
.IPv6: No header checksum, error detection on layer 4/2

IPv4 to IPv6 - Migration

.There is no „flag day" on which IPv4 routers are replaced by IPv6 routers.
. Not all routers can be upgraded simultaneously
-Rather a slow process of transition
.How to achieve this transition, i.e., a mixed, concurrent operation of IPv4 and IPv6 routers?

IPv4 and IPv6 together

.Two different possibilities
-Tunneling: IPv6 datagram is carried as payload in IPv4 datagram between IPv4 routers; IPv6 routers then decapsulate IPv6 datagram.
-Dual Stack: Routers can do both, IPv4 and IPv6; direct connection between same protocol clients (IPv4 \rightarrow IPv4, IPv6 \rightarrow IPv6); can be used together with tunneling

