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Introduction Näıve Bayes Bayesian Networks

Outline

Introduction
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Bayesian decision theory

With probability theory, the probability of events can be estimated
by repeatedly generating events and counting their occurrences

When, however, an event only very seldom occurs or is hard to
generate, other methods are required

Example:

Probability that the Arctic ice cap will have disappeared by the end
of this century

In such cases, we would like to model uncertainty

In fact, it is possible to represent uncertainty by probability
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Conditional probability

Conditional probability

The conditional probability of two events χ1 and χ2 with
P(χ2) > 0 is denoted by P(χ1|χ2) and is calculated by

P(χ1|χ2) =
P(χ1 ∩ χ2)

P(χ2)

P(χ1|χ2) describes the probability that event χ2 occurs in the
presence of event χ2.
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Bayesian decision theory

With the notion of conditional probability we can express the effect
of observed data −→a = a1, . . . , aN on a probability distribution of−→
b : P(

−→
b ).

Thomas Bayes described a way to evaluate the uncertainty of
−→
b

after observing −→a

P(
−→
b |−→a ) =

P(−→a |
−→
b )P(

−→
b )

P(−→a )

P(−→a |
−→
b ) expresses how probable a value for −→a is given a fixed

choice of
−→
b
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Example
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Bayesian curve fitting

In the classification problems considered before, we were given −→x
and −→y together with a new sample xM+1

The task is to find a good estimation of the value yM+1

This means that we want to evaluate the predictive distribution

p(yM+1|xM+1,
−→x ,−→y )

To account for measurement inaccuracies, typically a probability
distribution (e.g. Gauss) is underlying the sample vector −→x
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Bayesian curve fitting

M=9

Mean of the predictive distribution

+/- 1 standard deviation

y
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Näıve Bayes classificaiton

WiFi Accelerometer Audio Light At work
yes no yes no yes no yes no yes no

<3 APs 3 7 walking 4 8 quiet 8 5 outdoor 4 7 16 14
[3, 5] 5 5 standing 1 4 medium 6 3 indoor 12 7
>5 APs 8 2 sitting 11 2 loud 2 6

WiFi Accelerometer Audio Light At work

4 APs sitting medium indoors ???

Likelihood of YES: 5
16 ·

11
16 ·

6
16 ·

12
16 = 0.06

Likelihood of NO: 5
14 ·

2
14 ·

3
14 ·

7
14 = 0.005
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Näıve Bayes classificaiton

Likelihood of YES: 5
16 ·

11
16 ·

6
16 ·

12
16 ·

16
30 = 0.032

Likelihood of NO: 5
14 ·

2
14 ·

3
14 ·

7
14 ·

14
30 = 0.0026

Probability of YES: 0.032
0.032+0.0026 ≈ 0.925

Probability of NO: 0.0026
0.0026+0.032 ≈ 0.075

This is due to bayes rule:

P[Hypothesis|Evidence] =
P[Evidence|Hypothesis]P[Hypothesis]

P[Evidence]
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Näıve Bayes classificaiton

Likelihood of YES: 5
16 ·

11
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0.0026+0.032 ≈ 0.075

This is due to bayes rule:

P[Hypothesis|Evidence] = P[Evidence|Hypothesis]P[Hypothesis]

P[Evidence]

P[work|Evidence] = P[E1|work]P[E2|work]P[E3|work]P[E4|work]P[work = YES]

P[Evidence]

P[work|E] = P[5 APs|work]P[sitting|work]P[medium|work]P[indoors|work]P[work]

P[Evidence]
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Näıve Bayes classificaiton

The name Näıve Bayes stems from the fact that

1 the method is based on Bayes’ rule

2 it näıvely assumes independence among events

Note that it is only valid to multiply probabilities given the class
when the events are independent.

However, Even though the latter assumption is a realistic one in
realistic settings, the performance of Näıve Bayes on real data is
good.
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The name Näıve Bayes stems from the fact that

1 the method is based on Bayes’ rule
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Introduction Näıve Bayes Bayesian Networks

Näıve Bayes classificaiton

Be careful with impossible events!

In the case that an attribute value does not occur in the training
set in conjuction with every class value:

Assume: Walking always associated with ’NO’
(→ P[walking|yes] = 0)

Then: P[yes|E] = 0
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Näıve Bayes classificaiton

Solution (Laplace estimator)

Add small constant µ
n to all numerators and compensate by adding

µ to each of the n denominators:

5

16
· 11

16
· 6

16
· 12

16

→
5 + µ

4

16 + µ
·

11 + µ
4

16 + µ
·

6 + µ
4

16 + µ
·

12 + µ
4

16 + µ

In practice, these small modifications make little difference given
that there are sufficient training examples.
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Näıve Bayes classificaiton

Example (Laplace estimator)

Add 1 to all numerators and compensate by adding 4 to each of
the 4 denominators:

5

16
· 11

16
· 6

16
· 12

16

→ 6

20
· 12

20
· 7

20
· 16

20

Likelihood of YES: 6
20 ·

12
20 ·

7
20 ·

16
20 ·

16
30 = 0.022

Likelihood of NO: 6
18 ·

3
18 ·

4
18 ·

8
18 ·

14
30 = 0.0026

Probability of YES: 0.022
0.022+0.0026 ≈ 0.894

Probability of NO: 0.0026
0.0026+0.022 ≈ 0.105

In practice, these small modifications make little difference given
that there are sufficient training examples.
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Bayesian Networks

Concise and theoretically
well founded way of
representing probability
distributions in a
graphical manner

Directed acyclic Graph
with one vertex for each
feature or class
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Left side of the
distribution table in each
node contains a column
for every ingoing edge
from a parent node

Each row defines a
probability distribution
over the values of a
node’s attribute
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Prediction of class
probabilities

For a particular sample,
multiply all corresponding
probabilities
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Introduction Näıve Bayes Bayesian Networks

Example

outlook rainy

temperature cool

humidity high

windy true

play = no 0.367 · 0.167 ·
0.385 · 0.25 ·
0.429 = 0.0025

play = yes = 0.0077
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Example

play = no 0.367 · 0.167 · 0.385 · 0.25 · 0.429 = 0.0025

play = yes = 0.0077

P[play = no] 0.0025
0.367+0.167+0.385+0.25+0.429 = 0.245

P[play = yes] 0.0077
0.875+0.333+0.111+0.5+0.633 = 0.755

Remark Multiplication of all probabilities is valid due to
conditional independence: Multiplication is valid
provided that each node is independent from parents
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Conditional indepencence

Multiplication follows result of chain rule in probability theory (joint
probability of m variables can be decomposed into its product):

P[a1, a2, . . . , an] =
n∏

i=1

P[ai |ai−1, . . . , a1]

Since the Bayesian network is an acyclic graph, nodes can be
ordered to give all ancestors of a node ai indices smaller than i
Then, due to conditional indepencence:

P[a1, a2, . . . , an] =
n∏

i=1

P[ai |ai−1, . . . , a1] =
n∏

i=1

P[ai |ai ’s parents]
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Learning Bayesian Networks

In order to learn/train a Bayesian network we require

1 A function to evaluate a given network

2 A method to search through the space of possible networks
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Probability assigned to given instance is multiplied over all
instances.

To avoid very small numbers, the log likelihood is computed:

Log likelihood sum of the logarithms of the probabilities
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Learning Bayesian Networks
In order to learn/train a Bayesian network we require

1 A function to evaluate a given network
2 A method to search through the space of possible networks

Search through the space of possible networks

Vertices are predefined by features and classes

Network structure is learned by a search over the
space spanned by all possible edges

Caveat: Log likelihood rewards adding of further edges
(Network will overfit).

Solution 1 Adding a penalty for the complexity of the network

Solution 2 Use cross-validation to estimate the goodnesss of a fit
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Popular methods to evaluate the quality of a network

Akaike Information Criterion (AIC)

AIC score = −(Log likelihood) + K

MDL metric

MDL score = −(Log likelihood) +
K

2
logN

K Number of independent estimates in all probability
tables

N Number of instances in the data
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Introduction Näıve Bayes Bayesian Networks

Algorithms to learn Bayesian networks
A simple and fast algorithm to learn Bayesian networks is called
the K2 algorithm

K2 algorithm

Init: Given ordering of the featuers (vertices)

Iteratively: Process each node in turn by greedily adding edges
from previously processed nodes

In each step: Add the edge that maximizes the network’s score

Until: no further improvement → turn to the
next node

Overfitting: Can be avoided by restricting the maximum number
of parents for each node

Multistarts: Solution reached dependent on initial ordering
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Data structures for fast learning

Learning Bayesian networks involves a lot of counting

In order to avoid redundant computations,
all-dimensions (AD) trees might be employed

Creation of such tree for each node in the Bayes network
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Data structures for fast learning

All possible combinations can be directly read from the tree

→ Node count is low since some information is implicit
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Data structures for fast learning

Example

Humidity normal

Windy true

Play yes

(No node in the tree but one occurrence of [normal-true-no]
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Data structures for fast learning
AD trees pay off only if the data contains many instances
(e.g. thousands)

Therefore, usually a cutoff parameter k is employed that
specifies whether or not an AD tree is created for a specific
node
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Questions?

Stephan Sigg
stephan.sigg@cs.uni-goettingen.de
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