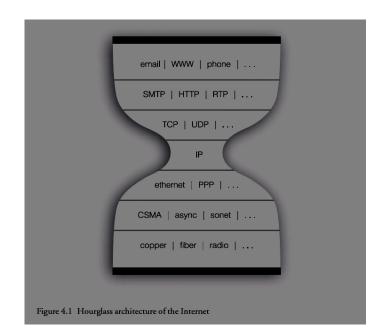
Exercise 4

Yachao Shao yshao@gwdg.de

Final Exam Notice


Time: 10.02.2020 14-16 o'clock

Place: MN 08

•Why is the Internet Protocol (IP) described as the "narrow waist" of the network stack?

IP as Narrow Waist

- •"IP over anything, anything over IP"
- •Single common tie between multiple upper and lower layer protocols
- •Innovation in upper/lower layers
- •Makes changes to IP difficult (IPv6 ...)

•What are the two key functions of the network layer, that each router performs? Please explain the difference between them.

Key Functionalities of a Router

- •Network Layer Functions:
 - Forwarding
 - Routing
- •Forwarding: move packets from router's input to an appropriate router output
- •Routing: determine route taken by packets from source to dest.

•Assume you have a 3,000 byte long datagram which needs to be fragmented for a 1,396 bytes MTU.

IP Datagram Fragmentation

- ∘3000 byte datagram, 1396byte MTU.
- One datagram is fragmented into multiple smaller datagrams... (assuming IPv4 header is 20byte)

Datagram No.	Length	Frag. Flag	Offset = (MTU-Header data / 8)
1	1396 (1376+20)	1	0
2	1396 (1376+20)	1	172
3	248 (228+20)	0	344
4			

•Convert the following IP addresses into their binary notion:

.192.168.0.1

IP Address Conversion (Decimal to Binary)

oTIP: Make yourself a table:

Power	2^7	2^6	2^5	2^4	2^3	2^2	2^1	2^0
Value	128	64	32	16	8	4	2	1
Rest								
Bit								

oFor each octet:

- •Put octet number into first "rest" cell
- ∘Bit = (value >= rest ? 1 : 0)
- Restnext = Restprev Bitprev x Valueprev
- ∘Rinse and Repeat

IP Address Conversion (Example)

oFirst octet of 192.168.0.1

Power	2^7	2^6	2^5	2^4	2^3	2^2	2^1	2^0
Value	128	64	32	16	8	4	2	1
Rest	64	0	0	0	0	0	0	0
Bit	1	1	0	0	0	0	0	0

Converting IP Addresses

- **.**192.168.0.1
- •11000000 10101000 00000000 00000001

- Convert the following IP address into it's decimal notion
- .11100011100001100000111110101010

•

IP Address Conversion (Binary to Decimal)

oMake yourself a table:

Power	2^7	2^6	2^5	2^4	2^3	2^2	2^1	2^0
Value	128	64	32	16	8	4	2	1
Bit								
Sum								

- oFor each octet:
- oFill the "Bit" row with the bits of the octet
- oFill the sum row:

Sumnext = Sumprev + Bitprev x Valueprev

IP Address Conversion (Binary to Decimal)

Octet 11100011:

Power	2^7	2^6	2^5	2^4	2^3	2^2	2^1	2^0
Value	128	64	32	16	8	4	2	1
Bit	1	1	1	0	0	0	1	1
Sum	128	192	224	224	224	224	226	227

○11100011100001100000111110101010•227.134.15.170

 A provider has been assigned the network 128.30.0.0/23 and wants to divide it among three customers. Customer A needs to accommodate up to 220 hosts, customer B needs to accommodate up to 110 hosts and customer C needs to accommodate up to 80 hosts. Please fill the following table with the details of the subnetworks that the provider can create to fit its customers' needs.

Subnet calculations example

- Subnet calculations are used to break a given network into smaller pieces
- Subnet mask:

A 32-bit number that masks an IP address, and divides the IP address into network address and host address.

oDecimal: /17

oDot-decimal: 255.255.128.0

Subnet calculations (Example) Not problem numbers

- oGiven network: 128.30.0.0/17
- Wanted: Four sub networks
- First step: Find new subnet mask
- $_{\circ}$ To address four networks we need at least two bits $(2^2 = 4)$.
- oThe new subnet mask is 17+2 = 19
- Second step: Find new network addresses (see next slide) By replaces the corresponding bits in network ID
- Third step: Calculate data for new networks (see homework)

Filling the table data

- Network ID is the first IP address in the range.
 (hosts bits are all 0s)
- Network Broadcast is the last IP address in the range. (hosts bits are all 1s)
- ○Hosts range = IP addresses range 2(Network ID,Broadcast)

Subnet calculations (example)

New netmask: 19 (= 255.255.224.0)

1111111111111111111100000.00000000

=> New network 2: 128.30.32.0/19 10000000.00011110.00100000.00000000

=> New network 3: 128.30.64.0/19 10000000.00011110.01000000.00000000

=> New network 4: 128.30.96.0/19 10000000.00011110.01100000.00000000

Network ID bits replacing with subnet bits to create new network IDs

Now go back to the problem and try to apply these Hints.

Subnet calculation (homework)

A provider has been assigned the network 128.30.0.0/23 and wants to divide it among three customers. Customer A needs to accommodate up to 220 hosts, customer B needs to accommodate up to 110 hosts and customer C needs to accommodate up to 80 hosts. Please fill the following table with the details of the subnetworks that the provider can create to fit its customers' needs.

Subnet No.	Network Address	Netmask	Host Range	No. of Hosts
1 Cust. A	128.30.0.0/24	255.255.255.0	128.30.0.1 – 128.30.0.254	254
2 Cust B	128.30.1.0/25	255.255.255.128	128.30.1.1 – 128.30.1.126	126
3 Cust C	128.30.1.128/25	255.255.255.128	128.30.1.129 – 128.30.1.254	126

- •Consider IP addresses:
- •How does a host get an IP address?
- •How does a network get the subnet part of an IP address?
- •How does a provider get a block of IP addresses?
- •What is the principle behind these procedures?

IP Address Allocation - Host

- .DHCP
- Dynamically gets an IP address on joining the network
- Allows reuse of addresses (address only reserved while online)
- Protocol: DHCP discover → offer → request →
 ack
- •More details: see lecture slides

IP Address Allocation - Network

- Allocation of a portion of the providers ISP address space
- •e.g., provider net 200.23.16.0/20
- •Possible allocated subnet: 200.23.30.0/23

IP Address Allocation - Provider

- •ICANN (Internet Corporation for Assigned Names and Numbers)
- Global allocation of addresses to ISPs
- •ISPs then reallocate their addresses to subnets/customers (see previous slides)
- However: Shortage of IPv4 addresses → Most blocks occupied

•What problem is tackled by Network Address Translation (NAT)? Please briefly describe what NAT does.

Network Address Translation (NAT)

- •IPv4: Address shortage
- •NAT: One network (of an arbitrary number of hosts) has only one IP address (NAT enabled router) that is accessible from the internet
- The remaining hosts are addressed internally
- •Use port numbers to decide which host the datagram is destined to, mapping inside NAT table
- •NAT is often considered a "dirty fix" to the address shortage issue (→ IPv6)

- •What are the main differences between IPv4 and IPv6?
- •What are two approaches towards the transition between IPv4 and IPv6?

IPv4 vs IPv6 - Differences

- •Address space: IPv4 2^32, IPv6 2^128
- •IPv6: Fixed header length, additional information needs to be stored in additional headers
- •IPv6: No packet fragmentation supported, fragmentation is moved to the sending host
- •IPv6: No header checksum, error detection on layer 4/2

•...

IPv4 to IPv6 - Migration

- •There is no "flag day" on which IPv4 routers are replaced by IPv6 routers.
- Not all routers can be upgraded simultaneously
- A slow process of transition
- •How to achieve this transition, i.e., a mixed, concurrent operation of IPv4 and IPv6 routers?

IPv4 and IPv6 together

- Two different possibilities
- •Tunneling: IPv6 datagram is carried as payload in IPv4 datagram between IPv4 routers; IPv6 routers then decapsulate IPv6 datagram.
- •Dual Stack: Routers can do both, IPv4 and IPv6; direct connection between same protocol clients (IPv4 → IPv4, IPv6 → IPv6); Missing IPv6 information.