
SOFTWARE-DEFINED NETWORKING
SESSION II

Advanced Computer Networks

David Koll

1Introduction to SDN: Software-defined Networks – Session I



Exam Information

• July 16th, 12.00-14.00 (not 10-12am!!!)
• Room: MN08
• Written exam

• Bring a non-erasable blue/black pen (no pencils!)
• Bring your student ID
• We provide paper
• No additional tools allowed (e.g., no calculator)



Exam Information

• All topics of the lecture will be covered.
• Wireless
• P2P
• ICN/CCN
• SDN
• DCN
• (Guest talk not relevant for exam)

• Know how concepts work, you will be asked to
perform some operations

• e.g., lookup in a Chord DHT

• Know why we need the concepts
• (e.g., what are the reasons for using SDN or CCN



Partly based on slides of Nick 
McKeown, Scott Shenker, Nick 

Feamster, Jin Xin, and Jennifer Rexford

4Introduction to SDN: Software-defined Networks – Session I



Recap

5Introduction to SDN: Software-defined Networks – Session I

N
. Feam

steret al.: „The Road to
SDN

 –
An intellecturalhistory

ofprogram
m

able
netw

orks“ ACM
 SIGCO

M
M

 Com
puter Com

m
unication Review

44.2 (2014): 87-98.



Recap: OpenFlow – A SDN Protocol

• Main components: Flow and Group Tables
• Controller can manipulate these tables via the OpenFlow

protocol (add, update, delete)
• Flow Table: reactively or proactively defines how

incoming packets are forwarded
• Group Table: additional processing



Recap: OpenFlow – Switches

• Incoming packets are matched against Table 0 first
• Find highest priority match and execute instructions

(might be a Goto-Table instruction)
• Goto: Only possible forward



Recap: Examples

Switching

*

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport Action

* 00:1f:.. * * * * * * * port6

Flow Switching

port3

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport Action

00:20.. 00:1f.. 0800 vlan1 1.2.3.4 5.6.7.8 4 17264 80 port6

Firewall

*

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport Action

* * * * * * * * 22 drop

8



OpenFlow - Matching



OpenFlow Controllers

10Introduction to SDN: Software-defined Networks – Session I



OpenFlow Controllers

…and many more: Beacon, Trema, OpenContrail, POF, etc.



That‘s a Lot of Controllers!?

Which controller should I use for what problem?

Introduction to SDN: Software-defined Networks – Session I 12

„There are almost as many controllers for SDNs as
there are SDNs“ – Nick Feamster



Which controller?

Concept?
Architecture?

Programming language and model?
Advantages / Disadvantages?

Learning Curve?
Developing Community?
Type of target network?

Introduction to SDN: Software-defined Networks – Session I 13



NOX [1]

• The first controller
• Open source
• Stable

• NOX-Classic: C++/Python 

• „New“ NOX: C++ only
• OF version supported: 1.0

Introduction to SDN: Software-defined Networks – Session I 14

[1] Gude et al. "NOX: towards an operating system for networks." ACM SIGCOMM CCR 38.3 (2008): 105-110.



NOX Architecture

Introduction to SDN: Software-defined Networks – Session I 15

switches and
attached servers

Controller 
maintains a 

network view

OpenFlow is
used to control

switches

Granularity of
Control: Per 

Flow

[1] Gude et al. "NOX: towards an operating system for networks." ACM SIGCOMM CCR 38.3 (2008): 105-110.



NOX Architecture

Programming model: Controller listens for OF 
events

Programmer writes action handlers for events

Introduction to SDN: Software-defined Networks – Session I 16



When to use NOX

• Need to use low-level semantics of OpenFlow
• NOX does not come with many abstractions

• Need of good performance (C++)
• E.g.: production networks

Introduction to SDN: Software-defined Networks – Session I 17



POX [1]

• POX = NOX in Python

• Advantages:
• Widely used, maintained and supported
• Relatively easy to write code for

• Disadvantage:
• Performance (Python is slower than C++)
• But: can feed POX ideas back to NOX for production use

Introduction to SDN: Software-defined Networks – Session I 18

[1] Mccauley, J. "Pox: A python-based openflow controller.“ http://www.noxrepo.org/pox/about-pox/



POX

Introduction to SDN: Software-defined Networks – Session I 19

0 20.000 40.000 60.000

NOX-C++

NOX-Python

POX

cbench "throughput" (flows per 
second)

0 40.000 80.000

NOX-C++

NOX-Python

POX

cbench “latency” (flows per second)

http://www.noxrepo.org/pox/about-pox/



When to use POX

• Learning, testing, debugging, evaluation

• Probably not in large production networks

Introduction to SDN: Software-defined Networks – Session I 20



Programming POX

Introduction to SDN: Software-defined Networks – Session I 21

def _handle_PacketIn (self, event):
"""
Handles packet in messages from the switch.
"""

packet = event.parsed # This is the parsed packet data.
if not packet.parsed:
log.warning("Ignoring incomplete packet")
return

packet_in = event.ofp # The actual ofp_packet_in message.

# process packet like a switch
self.act_like_switch(packet, packet_in)

• Recall: controller listens for OF events, here: packetIn



Programming POX

Introduction to SDN: Software-defined Networks – Session I 22

def act_like_switch (self, packet, packet_in):
"""
The controller will check whether or not the destination host 
is in the MAC-TO-PORT table.
IF that is the case, the controller instructs the switch to
forward via the corresponding port.
IF NOT, the controller instructs the switch to flood the packet. 
"""

#update MAC-TO-PORT table for source of packet
self.mac_to_port[packet.src] = packet_in.in_port

if packet.dst in self.mac_to_port:
out_port = self.mac_to_port[packet.dst]
# Send packet out the associated port
self.resend_packet(packet_in, self.mac_to_port[packet.dst])

else:
self.resend_packet(packet_in, of.OFPP_ALL)



Programming POX

Introduction to SDN: Software-defined Networks – Session I 23

def resend_packet (self, packet_in, out_port):
"""
Instructs the switch to resend a packet that it had sent to us.
"packet_in" is the ofp_packet_in object the switch had sent to the
controller due to a table-miss.
"""
msg = of.ofp_packet_out()
msg.data = packet_in

# Add an action to send to the specified port
action = of.ofp_action_output(port = out_port)
msg.actions.append(action)

# Send message to switch
self.connection.send(msg)



Just one more: Floodlight [1]

• Java

• Advantages:
• Documentation, 
• REST API conformity
• Production-level performance

• Disadvantage:
• Steep learning curve

Introduction to SDN: Software-defined Networks – Session I 24

[1] http://www.projectfloodlight.org/floodlight/



Floodlight: Users

Introduction to SDN: Software-defined Networks – Session I 25

Floodlight Adopters:
• University research
• Networking vendors
• Users
• Developers / startups



Floodlight Overview

Introduction to SDN: Software-defined Networks – Session I 26

• Floodlight is a collection of modules 

• Some modules (not all) export 
services

• All modules in Java

• Rich, extensible REST API
DeviceManager
(IDeviceService)

FloodlightProvider
(IFloodlightProviderService)

TopologyManager
(ITopologyManagerService)

RestServer
(IRestApiService)

StorageSource
(IStorageSourceService)

Forwarding

StaticFlowPusher
(IStaticFlowPusherService)

LinkDiscovery
(ILinkDiscoveryService)

VirtualNetworkFilter
(IVirtualNetworkFilterService)

Taken from: Cohen et al, “Software-Defined Networking and the Floodlight 
Controller”, available at http://de.slideshare.net/openflowhub/floodlight-
overview-13938216



Floodlight Overview

Introduction to SDN: Software-defined Networks – Session I 27

DeviceManager
(IDeviceService)

FloodlightProvider
(IFloodlightProviderService)

TopologyManager
(ITopologyManagerService)

RestServer
(IRestApiService)

StorageSource
(IStorageSourceService)

Forwarding

StaticFlowPusher
(IStaticFlowPusherService)

LinkDiscovery
(ILinkDiscoveryService)

DeviceManager
(IDeviceService)

FloodlightProvider
(IFloodlightProviderService)

TopologyManager
(ITopologyManagerService)

RestServer
(IRestApiService)

StorageSource
(IStorageSourceService)

Forwarding

StaticFlowPusher
(IStaticFlowPusherService)

LinkDiscovery
(ILinkDiscoveryService)

VirtualNetworkFilter
(IVirtualNetworkFilterService)

• Computes shortest path using Dijsktra
• Keeps switch to cluster mappings

 Installs flow mods for end-to-end routing

 Handles island routing

 Tracks hosts on the network

 MAC -> switch,port, MAC->IP, IP->MAC

 Implements via Restlets (restlet.org)

 Modules export RestletRoutable

 Supports the insertion and removal of static flows

 REST-based API

 Maintains state of links in network

 Sends out LLDPs

 Create layer 2 domain defined by MAC address

 Translates OF messages to Floodlight events
 Managing connections to switches via Netty

Ta
ke

n 
fr

om
: C

oh
en

 e
t a

l, 
“S

of
tw

ar
e-

De
fin

ed
 N

et
w

or
ki

ng
 a

nd
 th

e 
Fl

oo
dl

ig
ht

 
Co

nt
ro

lle
r”

, a
va

ila
bl

e 
at

 h
tt

p:
//

de
.s

lid
es

ha
re

.n
et

/o
pe

nf
lo

w
hu

b/
flo

od
lig

ht
-

ov
er

vi
ew

-1
39

38
21

6



Floodlight Programming Model

Introduction to SDN: Software-defined Networks – Session I 28

Switch

Switch 

vSwitch

IFloodlight-
Module

External 
Application

IFloodlightModule

 Java module that runs as part of Floodlight

 Consumes services and events exported by other modules
 OpenFlow (ie. Packet-in)
 Switch add / remove
 Device add /remove / move
 Link discovery

External Application

 Communicates with Floodlight via REST

Floodlight Controller

Switch 

Taken from: Cohen et al, “Software-Defined Networking and the Floodlight 
Controller”, available at http://de.slideshare.net/openflowhub/floodlight-
overview-13938216



Floodlight Modules

Introduction to SDN: Software-defined Networks – Session I 29

Network State

List Hosts

List Links

List Switches

GetStats (DPID)

GetCounters
(OFType…)

Static Flows

Add Flow

Delete Flow

List Flows

RemoveAll Flows

Virtual Network

Create Network

Delete Network

Add Host

Remove Host

User Extensions

…

Floodlight Controller

Switch

Switch 

vSwitch
Switch

Ta
ke

n 
fr

om
: C

oh
en

 e
t a

l, 
“S

of
tw

ar
e-

De
fin

ed
 N

et
w

or
ki

ng
 a

nd
 th

e 
Fl

oo
dl

ig
ht

 
Co

nt
ro

lle
r”

, a
va

ila
bl

e 
at

 h
tt

p:
//

de
.s

lid
es

ha
re

.n
et

/o
pe

nf
lo

w
hu

b/
flo

od
lig

ht
-

ov
er

vi
ew

-1
39

38
21

6



When to use Floodlight

• If you know JAVA
• If you need production-level performance
• Have/want to use REST API

Introduction to SDN: Software-defined Networks – Session I 30



Network Virtualization with 
OpenFlow

31Introduction to SDN: Software-defined Networks – Session I



Virtualizing OpenFlow

• Network operators “Delegate” control of subsets of 
network hardware and/or traffic to other network 
operators or users

• Multiple controllers can talk to the same set of 
switches

• Imagine a hypervisor for network equipments
• Allow experiments to be run on the network in 

isolation of each other and production traffic



Virtualizing OpenFlow

https://gallery.technet.microsoft.com/scriptcenter/Simple-Hyper-V-Network-d3efb3b8



Virtualization: VLANs

Normal L2/L3 Processing
Production VLANs

Research VLAN 1

Research VLAN 2

34



FlowVisor [1]

• A network hypervisor developed by Stanford
• A software proxy between the forwarding and 

control planes of network devices

[1
] S

he
rw

oo
d,

 e
t a

l. 
"F

lo
w

vi
so

r: 
A 

ne
tw

or
k 

vi
rt

ua
liz

at
io

n 
la

ye
r."

O
pe

nF
lo

w
Sw

itc
h 

Co
ns

or
tiu

m
, T

ec
h.

 R
ep

(2
00

9)
.



OpenFlow
Protocol

OpenFlow
FlowVisor & Policy Control

Broadcast Multicast

OpenFlow
Protocol

http
Load-balancer

FlowVisor-based Virtualization

OpenFlow 
Switch

OpenFlow 
Switch

OpenFlow 
Switch

Separation not only
by VLANs, but any

L1-L4 pattern

dl_dst=FFFFFFFFFFFF tp_src=80, or
tp_dst=80

36



Slicing Policies

• The policy specifies resource limits for each slice:

– Link bandwidth
– Maximum number of forwarding rules
– Topology
– Fraction of switch/router CPU

– FlowSpace: which packets does the slice 
control?



FlowVisor Resource Limits

• FV assigns hardware resources to “Slices”

• Topology
• Network Device or Openflow Instance (DPID)
• Physical Ports

• Bandwidth
• Each slice can be assigned a per port queue with a fraction of 

the total bandwidth



FlowVisor Resource Limits (cont.)

• FV assigns hardware resources to “Slices”

• CPU
• Employs Course Rate Limiting techniques to keep new flow 

events from one slice from overrunning the CPU

• Forwarding Tables
• Each slice has a finite quota of forwarding rules per device



FlowVisor FlowSpace

• FlowSpace is defined by a collection of packet headers 
and assigned to “Slices”

• Source/Destination MAC address
• VLAN ID
• Ethertype
• IP protocol
• Source/Destination IP address
• ToS/DSCP
• Source/Destination port number



Use Case: VLAN Partitioning

• Basic Idea: Partition Flows based on Ports and VLAN Tags
• Traffic entering system (e.g. from end hosts) is tagged
• VLAN tags consistent throughout substrate

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport

* * * * 1,2,3 * * * * *

* * * * 7,8,9 * * * * *

* * * * 4,5,6 * * * * *

Dave

Larry

Steve



Use Case: Content Distribution Network

• Basic Idea: Build a CDN where you control the entire network
• All traffic to or from CDN IP space controlled by 

Experimenter
• All other traffic controlled by default routing
• Topology is the entire network

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport

* * * * * 84.65.* * * * *

* * * * * * 84.65.* * * *

* * * * * * * * * *

From CDN
To CDN

Default



FlowSpace: Maps Packets to Slices

Taken from: Rob Sherwood’s presentation at ONS:
http://www.opennetsummit.org/archives/apr12/sherwood-mon-flowvisor.pdf



FlowVisor Slicing Policy

• FlowVisor intercepts OpenFlow messages from 
devices 

• Send control plane messages to the slice controller only if 
source is in slice topology.

• Rewrite OpenFlow feature negotiation messages so the 
slice controller only sees the ports in it’s slice

• Port up/down messages are pruned and only forwarded 
to affected slices



FlowVisor Slicing Policy

• FlowVisor intercepts OpenFlow messages from 
controllers

• Rewrites flow insertion, deletion & modification rules so 
they don’t violate the slice definition

• Flow definition – ex. Limit Control to HTTP traffic only
• Actions – ex. Limit forwarding to only ports in the slice



FlowVisor Slicing Policy

• FlowVisor intercepts OpenFlow messages from 
controllers

• Expand Flow rules into multiple rules to fit policy
• Flow definition – ex. If there is a policy for John’s HTTP traffic 

and another for Uwe’s HTTP traffic, FV would expand a single 
rule intended to control all HTTP traffic into 2 rules.

• Actions – ex. Rule action is send out all ports. FV will create one 
rule for each port in the slice.

• Returns “action is invalid” error if trying to control a port 
outside of the



FlowVisor Message Handling

OpenFlow
Firmware

Data Path

Alice
Controller

Bob
Controller

Cathy
Controller

FlowVisor

OpenFlow

OpenFlow

Packet

Exception

Policy Check:
Is this rule 
allowed?

Policy Check:
Who controls 
this packet?

Full Line Rate
Forwarding

Rule

Packet

Ta
ke

n 
fr

om
: R

ob
 S

he
rw

oo
d’

s p
re

se
nt

at
io

n 
at

 O
N

S:
ht

tp
:/

/w
w

w
.o

pe
nn

et
su

m
m

it.
or

g/
ar

ch
iv

es
/a

pr
12

/s
he

rw
oo

d-
m

on
-fl

ow
vi

so
r.p

df



FlowVisor Message Handling

OpenFlow
Firmware

Data Path

Alice
Controller

Bob
Controller

Cathy
Controller

FlowVisor

OpenFlow

OpenFlow

Packet

Exception

Policy Check:
Is this rule 
allowed?

Policy Check:
Who controls 
this packet?

Rule

Error

Ta
ke

n 
fr

om
: R

ob
 S

he
rw

oo
d’

s p
re

se
nt

at
io

n 
at

 O
N

S:
ht

tp
:/

/w
w

w
.o

pe
nn

et
su

m
m

it.
or

g/
ar

ch
iv

es
/a

pr
12

/s
he

rw
oo

d-
m

on
-fl

ow
vi

so
r.p

df



CoVisor [1]

[1] Jin et al: “CoVisor: A Compositional Hypervisor for Software-Defined Networks”, USENIX NSDI 2015
Slides from the presentation at NSDI’15

• FlowVisor allows controllers to work on disjoint slices 
of traffic only

• How about multiple controllers collaborating on the 
same traffic?



CoVisor – Controller Composition
• CoVisor allows combinations of parallel, sequential 

and override operators. 

• Combination:



CoVisor – Overview



CoVisor – Policy Composition



CoVisor – Policy Composition



CoVisor – Policy Composition



CoVisor – Policy Composition



CoVisor – Policy Composition



CoVisor – Naïve Policy Composition



CoVisor – Naïve Policy Composition



CoVisor – Naïve Policy Composition



CoVisor – Incremental Solution



CoVisor – Incremental Solution



CoVisor – Incremental Solution



CoVisor – Incremental Solution



CoVisor – Incremental Solution



CoVisor – Incremental Solution



CoVisor – Incremental Solution



CoVisor – Incremental Solution



CoVisor – Incremental Solution



CoVisor – Overview



CoVisor - Devirtualization

Introduction to SDN: Software-defined Networks – Session I 70



CoVisor - Devirtualization

Introduction to SDN: Software-defined Networks – Session I 71



Summary SDN

• SDN as a new way of networking that exploits existing 
concepts

• Separation of planes, etc.

• OpenFlow as the de-facto standard protocol
• Controllers as operating systems

• Application: network virtualization
• Slicing
• Co-existence of different controllers

• On disjoint traffic
• On same traffic



Outlook SDN

• There is a lot more, just a small subset covered so far

• If you’re interested:

• Block courses on Software-defined Networking (probably at 
the end of the upcoming winter semester, i.e., March 2016)

• Introduction to SDN (1 week)
• Advanced SDN (1 week)

• Some things from this lecture will be familiar
• Add-ons: practical work on SDNs, researching on SDNs


	Software-defined Networking �Session II
	Exam Information
	Exam Information
	Foliennummer 4
	Recap
	Recap: OpenFlow – A SDN Protocol
	Recap: OpenFlow – Switches
	Recap: Examples
	OpenFlow - Matching
	Foliennummer 10
	OpenFlow Controllers
	That‘s a Lot of Controllers!?
	Which controller?
	NOX [1]
	NOX Architecture
	NOX Architecture
	When to use NOX
	POX [1]
	POX
	When to use POX
	Programming POX
	Programming POX
	Programming POX
	Just one more: Floodlight [1]
	Floodlight: Users
	Floodlight Overview
	Floodlight Overview
	Floodlight Programming Model
	Floodlight Modules
	When to use Floodlight
	Foliennummer 31
	Virtualizing OpenFlow
	Virtualizing OpenFlow
	Virtualization: VLANs�
	FlowVisor [1]	
	Foliennummer 36
	Slicing Policies
	FlowVisor Resource Limits
	FlowVisor Resource Limits (cont.)
	FlowVisor FlowSpace
	Use Case: VLAN Partitioning
	Use Case: Content Distribution Network
	FlowSpace: Maps Packets to Slices
	FlowVisor Slicing Policy
	FlowVisor Slicing Policy
	FlowVisor Slicing Policy
	FlowVisor Message Handling
	FlowVisor Message Handling
	CoVisor [1]
	CoVisor – Controller Composition
	CoVisor – Overview
	CoVisor – Policy Composition
	CoVisor – Policy Composition
	CoVisor – Policy Composition
	CoVisor – Policy Composition
	CoVisor – Policy Composition
	CoVisor – Naïve Policy Composition
	CoVisor – Naïve Policy Composition
	CoVisor – Naïve Policy Composition
	CoVisor – Incremental Solution
	CoVisor – Incremental Solution
	CoVisor – Incremental Solution
	CoVisor – Incremental Solution
	CoVisor – Incremental Solution
	CoVisor – Incremental Solution
	CoVisor – Incremental Solution
	CoVisor – Incremental Solution
	CoVisor – Incremental Solution
	CoVisor – Overview
	CoVisor - Devirtualization
	CoVisor - Devirtualization
	Summary SDN
	Outlook SDN

