
Exercise 9 – MN Python API & POX

1. The Python API and Topologies (50P)

Please explain – line by line – what happens in the following code:

1 def runExp():

2 topo = customTopo(n=2)

3 net = Mininet(topo=topo)

4 net.start()

5 CLI(net)

6 net.stop()

7

8 class customTopo(Topo):

9 def __init__(self, n, **kwargs):

10 Topo.__init__(self, **kwargs)

11 h1, h2 = self.addHost('h1'), self.addHost('h2')

12 s1 = self.addSwitch('s1')

13 for _ in range(n):

14 self.addLink(s1, h1)

15 self.addLink(s1, h2)

16

17 if __name__ == '__main__':

18 setLogLevel('info')

19 runExp()

2. The POX controller (100P)

One of the main features of Mininet is that you can easily port your emulated networks to

real-world production networks. To do so, you will need to define a mapping of your

production network to an emulated Mininet. This also includes the controllers you use.

In this exercise you will have a look at the POX controller. POX is included in the VM image

we are using for this course. What we want to do first, is to bring up a very simple controller

implementation that acts like a standard hub.

a. (Optional) You will read the solution on the next page, but think about which

parameters you would have to call mn with to generate a single switch topology with

three hosts that assigns nodes with simplified MAC addresses, runs the Open vSwitch

implementation on the switch and will link with an external controller.

For that, we bring up a new mininet (don’t for get to clean up before you do this):

Now, we will bring up the POX controller in a separate terminal:

b. (10P) What do you observe after connecting the controller?

We will now check if our hub is working correctly.

c. (20P) Open one xterm window for each host and run tcpdump on hosts 1 and 2:

Then, in the xterm of host 3, try to ping the IP address of h1 or h2. Also try to ping a device

that is not reachable. Please explain what you observe (Hint: if you recall your basic

lecture on computer networks, you should know that a hub is generally a dumb device.)

As the main part of this exercise, you will now change the POX controller so that it operates as a

learning switch instead of a hub. Stop your current hub controller and your current emulated

network. Clean up appropriately.

d. (Optional) Recap how a learning switch is operating.

e. (70P) Open up the file pox/pox/misc/of_tutorial.py in the editor of your choice.

In the Python code you will see that we are currently operating our controller with

the help of the act_like_hub() method. Your task in this exercise is to

i. (10P) modify the controller to use act_like_switch() instead.

ii. (40P) implement act_like_switch() so that your controller actually acts like

a switch. There are some helpful hints in the code.

iii. (20P) It is somewhat inefficient to let the controller decide the fate of every

single packet. Implement an act_like_flow_switch() method in which your

controller instead installs flow-rules into the switch for all packets that are

initiually flow-table misses. This will improve the performance of the

forwarding on subsequent packets. You can use the POX API and the POX

documentation regarding OpenFlow here (hint: have a very close look at

ofp_flow_mod).

SUBMISSION: Submit your Python code alongside your text answers.

$ sudo mn –-topo single,3 –-mac –-switch ovsk –-controller remote

$./pox/pox.py log.level –-DEBUG misc.of_tutorial

tcpdump –XX –n –i <interface>

https://openflow.stanford.edu/display/ONL/POX+Wiki#POXWiki-POXAPIs
https://openflow.stanford.edu/display/ONL/POX+Wiki#POXWiki-OpenFlowinPOX
https://openflow.stanford.edu/display/ONL/POX+Wiki#POXWiki-OpenFlowinPOX

