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Decision tree
A decision tree is a tree that divides the examples from a dataset
according to the features and classes observed for them
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Decision tree

How to generate such decision tree?

First select a feature to split on and place it at the root
node.

Then repeat this procedure for all child nodes

How to determine the feature to split on?
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Decision tree

WiFi Accelerometer Audio Light At work
yes no yes no yes no yes no yes no

<3 APs 3 7 walking 4 8 quiet 8 5 outdoor 4 7 16 14
[3, 5] 5 5 standing 1 4 medium 6 3 indoor 12 7
>5 APs 8 2 sitting 11 2 loud 2 6

Which one is the best choice?
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Decision tree

We are interested in the gain in information when a particular
choice is taken
The decision tree should then decide for the split that promises
maximum information gain.
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Decision tree

This can be estimated by the entropy of a value:

E(p1, p2, . . . , pn) = −p1 log2 p1 − p2 log2 p2 · · · − pn log2 pn
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Decision tree

E(p1, p2, . . . , pn) = −p1 log2 p1 − p2 log2 p2 · · · − pn log2 pn
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Decision tree
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Decision tree

Information value:

WiFi: ≈ 0.868

Acc: ≈ ...

Audio: ≈ ...

Light: ≈ ...
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Decision tree

Information value:

WiFi: ≈ 0.868

Acc: ≈ 0.756

Audio: ≈ 0.884

Light: ≈ 0.948

Information gain:

(Initial information value (working [yes/no]): 0.997
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Decision tree – C4.5

Improved decision tree implementation: C4.5

Dealing with numeric values

Missing values

Noisy data
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C4.5 – Dealing with numeric values

Nominal feature values

For nominal features, the decision tree splits on every possible
value. Therefore, the information content of this feature is 0 after
such branch has been conducted

Numeric feature values

For numeric feature values, splitting on each possible value would
lead to a very wide tree of small depth.
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C4.5 – Dealing with numeric values

For numeric values, the tree is split into several intervals.

Machine Learning and Pervasive Computing



Decision Tree C4.5 Confidence on a prediction

C4.5 – Missing values

Missing values in a data set

Missing values are a common/prominent event in real-world data
sets

participants in a survey refuse to answer

malfunctioning sensor nodes

Biology: plants or animals might die before all variables have
measured

...

Most machine learning schemes make the implicit assumption that
there is no significance in the fact that a certain value is missing.

The absence of data might already hold valuable information!
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C4.5 – Missing values

The absence of data might already hold valuable information!

Example

People analyzing medical databases have noticed that cases may,
in some circumstances, be diagnosable simply from the tests that a
doctor decides to make – regardless of the outcome of the tests1

1Witten et al., Data Mining, Morgan Kaufmann, 2011
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C4.5 – Missing values

Possible solution

Considering whether the sets of samples with values have
significant difference in their final outcome when compared to the
sets of samples that feature missing values
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C4.5 – Noisy data

Fully expanded decision trees often contain unnecessary structure
that should be simplified before deployment

Pruning

Prepruning Trying to decide through the tree-building process
when to stop developing subtrees

Might speed up tree creation phase
Difficult to spot dependencies between features
at this stage (features might be meaningful
together but not on their own)

Postpruning Simplification of the decision tree after the tree has
been created
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C4.5 – Noisy data

Postpruning – subtree replacement

Select some subtrees and replace them with single leaves

Will cause accuracy on the training set to decrease

May increase accuracy on independently chosen test set
(reduction of noise)
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C4.5 – Noisy data

Postpruning – subtree raising

Complete subtree is raised one level and samples at the nodes of
the subtree have to be recalculated
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C4.5 – Estimating error rates

When should we raise or replace subtrees?

Estimating error rates

Estimation of error rates at internal nodes and leaf nodes.

Assumption: Label of node is chosen as the majority vote from all
its leaves

Will lead to a certain number of errors E

... out of the total number of instances N

Assume:

1 True probability of error at that node is q
2 N instances are generated by Bernoulli process with parameter

q and errors E
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C4.5 – Estimating error rates

Estimating error rates – Calculating the success probability

Given a confidence c (C4.5 uses 25%), we find a confidence limit z
(for c = 25%→ z = 0.69) such that

P

 q′ − q√
q(1−q)

N

> z

 = c

(with the observed error rate q′ = E
N )

This leads to an upper confidence limit for q which we can
use to estimate a pessimistic error rate e

e =
q′ + z2

2N + z
√

q′

N −
q′2

N + z2

4N2

1 + z2

N
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C4.5 – Estimating error rates

Example

Lower left leaf (E = 2,N = 6) Utilising the formula
for e, we obtain
q′ = 0.33 and e = 0.47

Center leaf(E = 1,N = 2) e = 0.72

Right leaf (E = 2,N = 6) e = 0.47

Combine Eror estimates Utilising ratio 6:2:6 this
leads to a combined error estimate of

0.47 · 6
14

+
0.72 · 2

14
+

0.47 · 6
14

≈ 0.51

Error estimate for parent node q′ = 4
14 → e = 0.46

0.46 < 0.51⇒ prune children away
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C4.5 – Further heuristics employed

Postpruning – Confidence value c = 25%

Postpruning – Split Threshold Candidate splits on a numeric
feature are only considered when at least
min(10%, 25) of all training samples are cut off by
the split

Prepruning with information gain Given S candidate splits on a
certain numeric attribute, log2

S
N is subtracted from

the information gain

in order to prevent overfitting
When information gain is negative,
tree-construction will stop
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C4.5 – Remarks

Postpruning

Postpruning in C4.5 is very fast and therefore popular

However, the statistical assumptions are shaky

use of upper confidence limit
assumption of normal distribution for error rate calculation
use of statistics from the training set

Often, the algorithm does not prune enough and a better
performance can be achieved with a more compact decision
tree
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Confidence on a prediction

Assume we measure the error of a classifier on a test set and
obtain a numerical error rate of q (a success rate of p = (1− q).

What can we say about the true success rate?

It will be close to p,

but how close? (within 5% or 10% ?)

This depends on the size of the test set

Naturally, we are more confident on the success probability p when
it were based on a large number of values.
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Confidence on a prediction

In statistics, a succession of independent events that either succeed
or fail is called a Bernoulli process

Assume that out of N events, S are successful.

Then we have an observed success rate of p′ = S
N

What can we say about the true success rate p?

Confidence Interval

The answer is expressed as a confidence interval:
p lies within a certain specified interval with a crtain specified
confidence
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Confidence on a prediction

For a specific Bernoulli trial with success rate p we have

mean p

variance p(1− p)

For large N, the distribution of this random variable approaches
the normal distribution
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Confidence on a prediction

The probability that a random variable X , with zero mean, lies
within a certain confidence range of width 2z is

P[−z ≤ χ ≤ z ] = c

Confidence limits for the normal distribution are e.g.

P[χ ≥ z ] 0.001 0.005 0.01 0.5 0.1 0.2 0.4
z 3.09 2.58 2.33 1.65 1.28 0.84 0.25

Standard assumption in such tables on the random variable:

mean 0
variance 1
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Confidence on a prediction

P[χ ≥ z ] 0.001 0.005 0.01 0.5 0.1 0.2 0.4
z 3.09 2.58 2.33 1.65 1.28 0.84 0.25

The z figures are measured in standard deviations from the mean:

Example

E.g. the figure for P[χ ≥ z ] = 0.05 implies that there is a 5%
chance that χ lies more than 1.65 standard deviations above the
mean.

Since the distribution is symmetric, the chance that X lies
more than 1.65 standard deviations from the mean is 10%:

P[−1.65 ≤ χ ≤ 1.65] = 0.9

Machine Learning and Pervasive Computing



Decision Tree C4.5 Confidence on a prediction

Confidence on a prediction

P[χ ≥ z ] 0.001 0.005 0.01 0.5 0.1 0.2 0.4
z 3.09 2.58 2.33 1.65 1.28 0.84 0.25

The z figures are measured in standard deviations from the mean:

Example

E.g. the figure for P[χ ≥ z ] = 0.05 implies that there is a 5%
chance that χ lies more than 1.65 standard deviations above the
mean.

Since the distribution is symmetric, the chance that X lies
more than 1.65 standard deviations from the mean is 10%:

P[−1.65 ≤ χ ≤ 1.65] = 0.9

Machine Learning and Pervasive Computing



Decision Tree C4.5 Confidence on a prediction

Confidence on a prediction

P[χ ≥ z ] 0.001 0.005 0.01 0.5 0.1 0.2 0.4
z 3.09 2.58 2.33 1.65 1.28 0.84 0.25

The z figures are measured in standard deviations from the mean:

Example

E.g. the figure for P[χ ≥ z ] = 0.05 implies that there is a 5%
chance that χ lies more than 1.65 standard deviations above the
mean.

Since the distribution is symmetric, the chance that X lies
more than 1.65 standard deviations from the mean is 10%:

P[−1.65 ≤ χ ≤ 1.65] = 0.9

Machine Learning and Pervasive Computing



Decision Tree C4.5 Confidence on a prediction

Confidence on a prediction

In order to apply this to the random variable p′, we have to reduce
it to have zero mean and unit variance.

We do this by subtracting the mean p and by dividing by the

standard deviation
√

p(1−p)
N

This leads to

P

−z < p′ − p√
p(1−p)

N

< z

 = c
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To find confidence limits, given a particular confidence figure c :

consult a table with confidence limits for the normal
distribution for the corresponding value z

Note: since Success probabilities are displayed, we have to
subtract our value c from 1 and divide by two:

1− c

2

Then, write the inequality above as an equality and invert it
to find an expression for p

Finally, solving a quadratic equation will produce the
respective value for p
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Finally, solving a quadratic equation will produce the
respective value for p

p =

(
p′ + z2

2N

∨
±z
√

p′

N −
p′2

N + z2

4N2

)
1 + z2

N

The resulting two values are the upper and lower confidence
boundaries
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Example

p′ = 0.75; N = 1000, c = 0.8 (z = 1.28) → [0.732, 0.767]

p′ = 0.75; N = 100, c = 0.8 (z = 1.28) → [0.691, 0.801]

Note that the assumptions taken are only valid for large N
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Outline

Decision Tree

C4.5

Confidence on a prediction
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Questions?

Stephan Sigg
stephan.sigg@cs.uni-goettingen.de
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