Telematics Homework #5

Niklas Neumann 2 December 2009

Broadcast and multicast routing

 Q: What is the difference between broadcast routing and multicast routing?

- Broadcast routing delivers data to all hosts in a particular network
- Multicast routing delivers data to a subset of hosts in a particular network

Packet duplication

 Q: What are the different methods for packet duplication in multicast routing? Explain the advantages and disadvantages.

- Source duplication
 - + No support from the network required
 - Duplicate packets on the same links
 - Source might not know the recipients (esp. broadcast routing

Packet duplication (cont'd)

- In-network duplication
 - + No duplicate packets on the same link(s)
 - Network support required
- Application level duplication
 - + No network support required
 - Might have duplicate packets on the same link(s)

Multicast concepts

 Q: Briefly explain the following concepts of multicast routing:

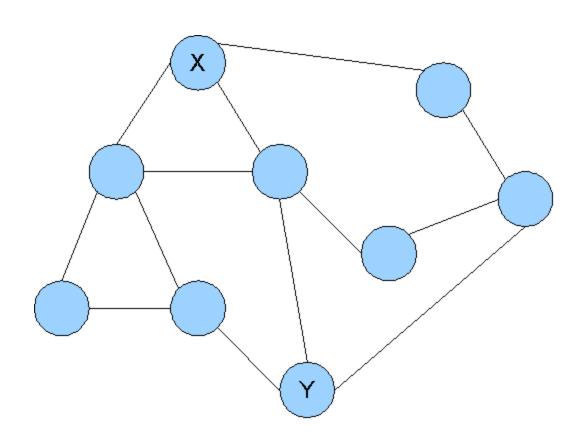
- (Minimal) Spanning tree
 - Subgraph that includes all nodes but only least number of edges so that all nodes are connected
 - Minimal spanning tree: spanning tree with minimal weight of edges (i.e. equal or less than any other spanning tree

Multicast concepts (cont'd)

- Shortest path tree
 - Spanning tree that minimizes path costs from given source to any other node
- Source-based tree
 - (Multicast) tree that is specific for any given source node
- (Group-) Shared tree
 - (Multicast) tree that is shared among different source nodes

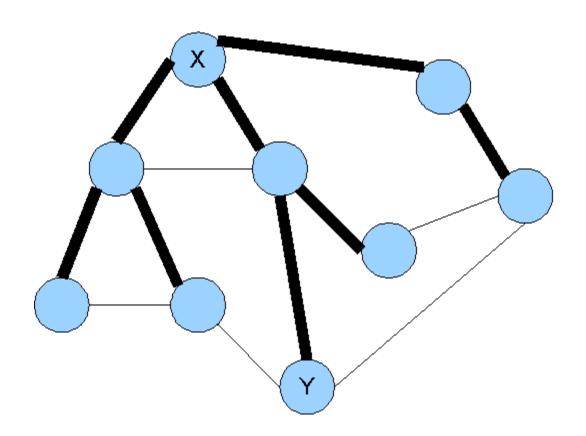
Multicast concepts (cont'd)

- Reverse path forwarding
 - Forwarding of a (multicast) packet only if it arrived on the same link that a node would use itself to send packets to the source
- Center-based tree
 - (Multicast) tree that is formed when participating nodes add links that connect them to a common source



Reverse Path Forwarding

- Q: Given the following network, use Reverse Path Forwarding to create a distribution tree with router X as the source. What happens if router Y does not have any attached nodes that are interested in the multicast data?
 - You can assume that all links have the same weight.

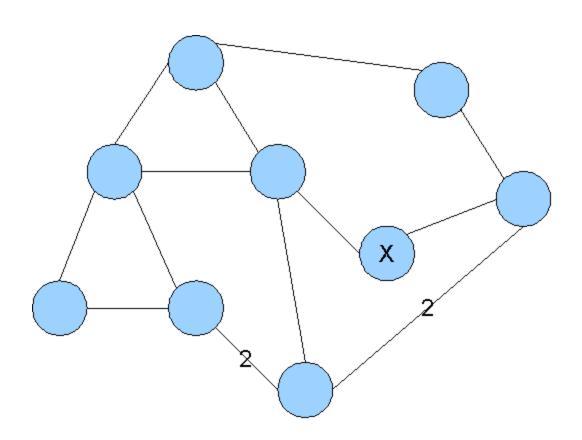


Reverse Path Forwarding (cont'd)

Reverse Path Forwarding (cont'd)

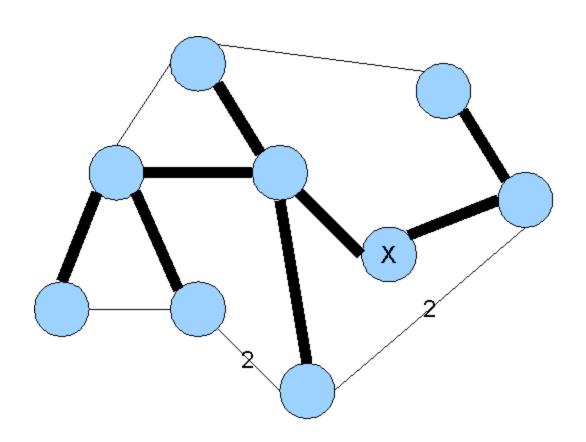
Reverse Path Forwarding (cont'd)

 If router Y does not have any attached nodes that are interested in the multicast data, it will send a PRUNE message to it upstream node excluding itself from the tree



Center-based distribution tree

- Q: Given the following network, create a center-based distribution tree using router X as the center.
 - Unless noted otherwise, all links have a weight of
 1.



Center-based distribution tree (cont'd)

Center-based distribution tree (cont'd)

Protocol Independent Multicast

 Q: Compare the two multicast distribution scenarios in Protocol Independent Multicast (PIM).

Sparse mode

- Membership upon explicitly join request
- Receiver- driven distribution tree (e.g., centerbased)
- Conservative bandwidth usage
- Low processing requirements for non-group routers

Protocol Independent Multicast (cont'd)

- Dense mode
 - Membership "by default" until explicit prune
 - Data-driven distribution tree (e.g., RPF)
 - Increased bandwidth usage
 - Considerable processing requirements for nongroup-routers

Mobility

Q: Explain three basic approaches to mobility.
 Name their advantages and disadvantages.

Routing-based

- Routers is responsible for mobility management
- Routers advertise path to mobile node via usual routing table exchange
- Routing tables indicate where mobile node is located
- + No changes to end-systems
- -- Does not scale well

- Host-based (indirect routing)
 - Home agent relays data between correspondent node and mobile node
 - Mobile node has a permanent address that is routed through home agent

- Host-based (indirect routing)
 - + No exposure of current location of mobile node
 - + No changes to the corresponding node
 - + Ongoing connections can be maintained when mobile node moves
 - Inefficient routing (triangular routing)
 - Changes to end host
 - Home agent is bottleneck

- Host-based (direct routing)
 - Correspondent node gets current address of mobile node from its home agent
 - Correspondent node communicates directly with mobile node

- Host-based (direct routing)
 - + Efficient routing
 - + Home agent isn't a bottleneck
 - Exposure of current location of mobile node
 - Changes to the corresponding node as well as mobile node required
 - Difficult to maintain ongoing connections when mobile node moves

Mobile IP

 Q: Name the entities involved in a mobility scenario using Mobile IP and briefly explain their function.

- Home agent
 - Maintains permanent address for mobile node (home address)
 - Handles binding of permanent address to care-of address

Mobile IP (cont'd)

- Foreign agent
 - Maintains current address for mobile node (care-of address)
 - Registers care-of address with home agent
- Mobile node
 - The host which requires mobility support
- Correspondent node
 - The host which communicates with the mobile node

Agent discovery

 Q: How does a mobile node discover a mobility agent in it's current network and how can it obtain a care-of address?

- Agents (foreign agent & home agent) send out periodic ICMP messages (type 9)
 - They are called agent advertisement messages

Agent discovery (cont'd)

- Advertisements of foreign agent include a list of available care-of addresses
 - Mobile node sends registration request for specific care-of address
 - Foreign agent acknowledges with registration reply message

Thank you

Any questions?

