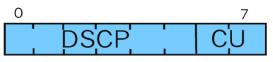
Computer Networks WS14/15 Homework #10

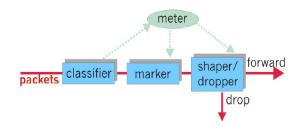
• Q: Name three building blocks of QoS


- Q: Name three building blocks of QoS
- Classification: distinguish one flow/class from another
- Policing: ensure traffic is conform to contracted parameters
- Scheduling: ensure QoS guarantees (bandwidth, delay)
- Admission control and resource reservation: check if resource requirements can be met and admit or deny flows accordingly

Classification: distinguish one flow/class from another

Classification and Conditioning

- Packet is marked in the Type of Service (TOS) in IPv4, and Traffic Class in IPv6
- 6 bits used for Differentiated Service Code Point (DSCP) and determine PHB that the packet will receive
- o 2 bits are currently unused



com N-	E	T	3)
Ŵ	OR	K	S

6: Quality of Service 6-19

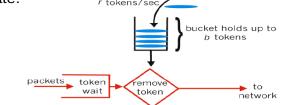
Classification and Conditioning

- may be desirable to limit traffic injection rate of some class:
 - o user declares traffic profile (e.g., rate, burst size)
 - o traffic metered, shaped if non-conforming

N E T WORKS

Policing: ensure traffic conforms contracted parameters

Policing Mechanisms


- o Goal: limit traffic to not exceed declared parameters
- Three common-used criteria:
- o (Long term) Average Rate: how many pkts can be sent per unit time (in the long run)
 - o crucial guestion: what is the interval length: 100 packets per sec or 6000 packets per min have same average!
- o Peak Rate: e.g., 6000 pkts per min. (ppm) avg.; 1500 ppm peak rate
- o (Max.) Burst Size: max. number of pkts sent consecutively (with no intervening idle)

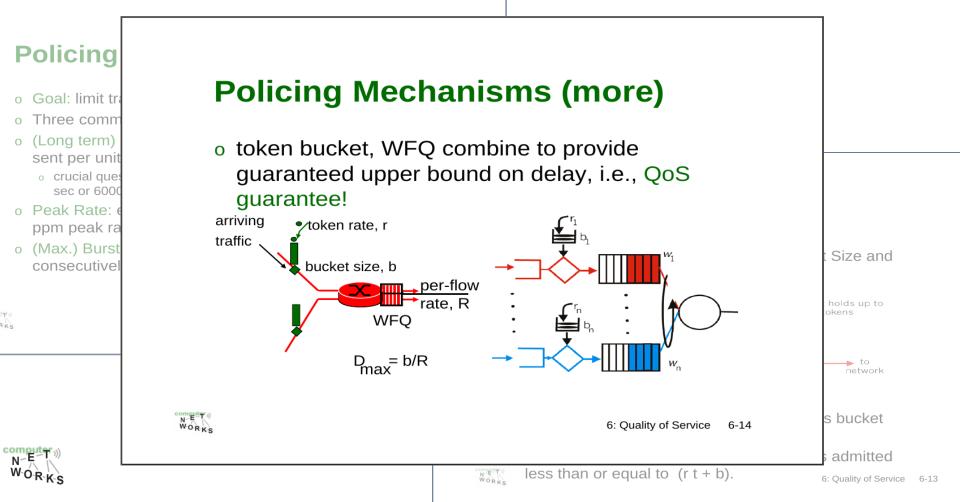
t	ŗ	1)	
2	ĸ	s	

6: Quality of Service

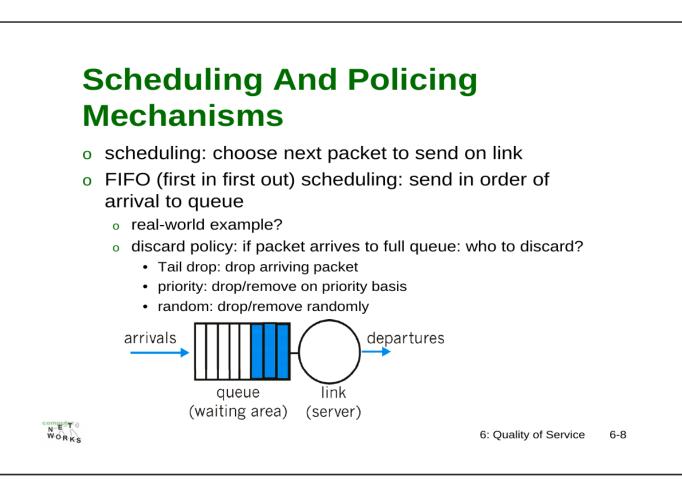
Policing Mechanisms

 Token Bucket: limit input to specified Burst Size and Average Rate. r tokens/sec

- bucket can hold b tokens 0
- o tokens generated at rate r token/sec unless bucket full
- o over interval of length t: number of packets admitted

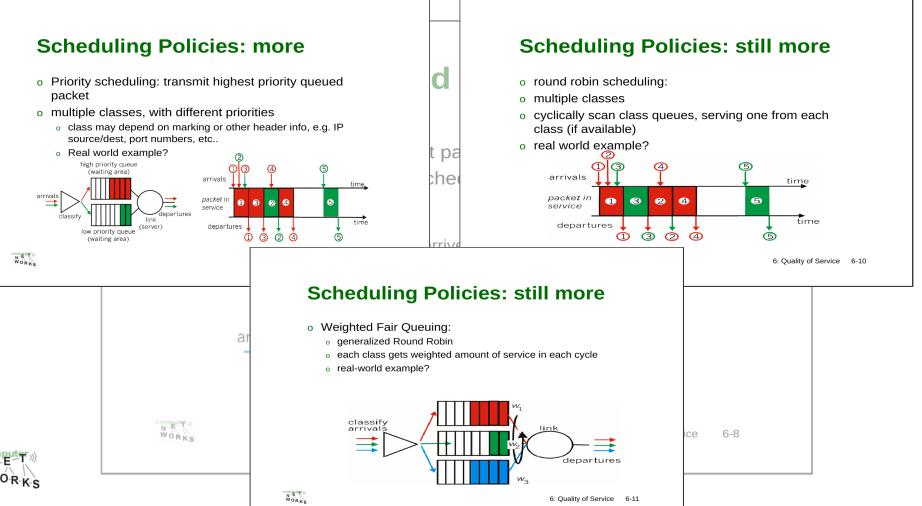


less than or equal to (r t + b).

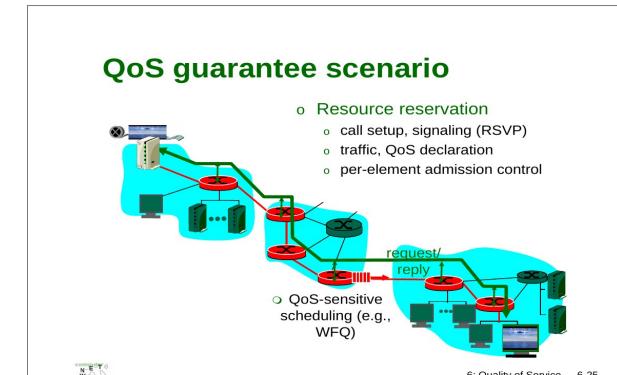


6: Quality of Service 6-13

Policing: ensure traffic conforms contracted parameters



Scheduling: ensure QoS guarantees (bandwidth, delay)



Scheduling: ensure QoS guarantees (bandwidth, delay)

Admission control and resource reservation: check if resource requirements can be met and admit or deny flows accordingly

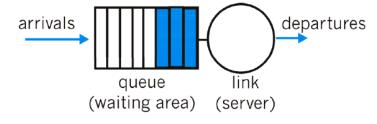
Scheduling Policies

• Q: Name and characterize four scheduling policies that were introduced in the lecture.

Scheduling Policies

First In First Out (FIFO)

- Packets are sent in order of arrival
- If queue is full, discard either
 - Newly arriving packets
 - Packets based on priority
 - Random packets

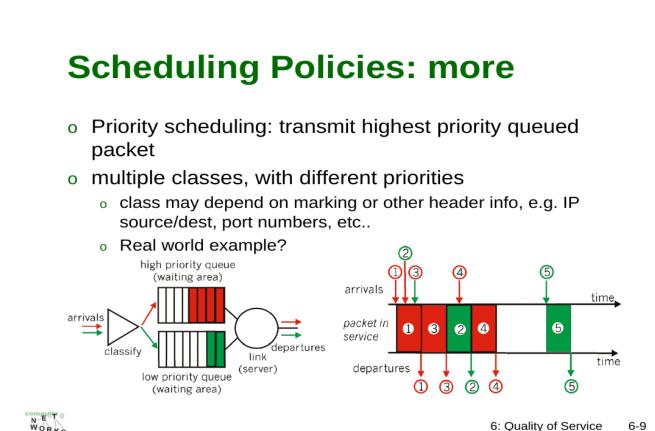


Scheduling Policies

First In First Out (FIFO)

Scheduling And Policing Mechanisms

- o scheduling: choose next packet to send on link
- FIFO (first in first out) scheduling: send in order of arrival to queue
 - real-world example?
 - o discard policy: if packet arrives to full queue: who to discard?
 - Tail drop: drop arriving packet
 - priority: drop/remove on priority basis
 - random: drop/remove randomly

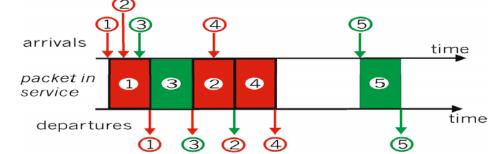


Priority Scheduling

• Packets are sent in order of priority

Priority Scheduling

Round Robin

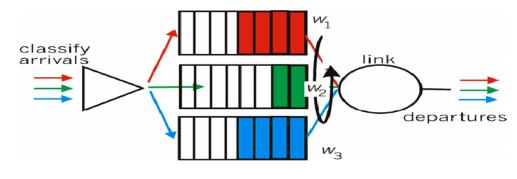

 Packets are sent alternating between different classes

Round Robin

Scheduling Policies: still more

- o round robin scheduling:
- o multiple classes
- cyclically scan class queues, serving one from each class (if available)
- o real world example?

Weighted Fair Queuing


- Combination of Priority Scheduling and Round Robin
- Weighted amount of packets sent from each class every cycle

Weighted Fair Queuing

Scheduling Policies: still more

- o Weighted Fair Queuing:
 - generalized Round Robin
 - o each class gets weighted amount of service in each cycle
 - o real-world example?

• Q: Which are the criteria that policing mechanisms can use to control a data stream?

Policing

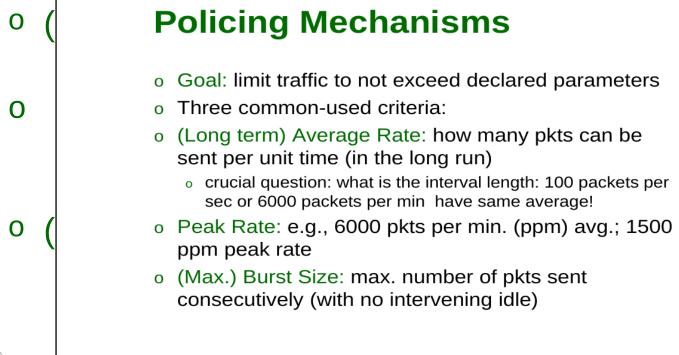
 Q: Which are the criteria that policing mechanisms can use to control a data stream?

(Long term) Average Rate

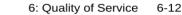
• E.g. 6,000 packets per min (ppm)

o Peak Rate

 E.g. 6,000 ppm on avg but limited to 1,500 packets per sec (pps) peak rate


o (Max.) Burst Size

• E.g. 500 packets



Policing

• Q: Which are the criteria that policing mechanisms can use to control a data stream?

NORK

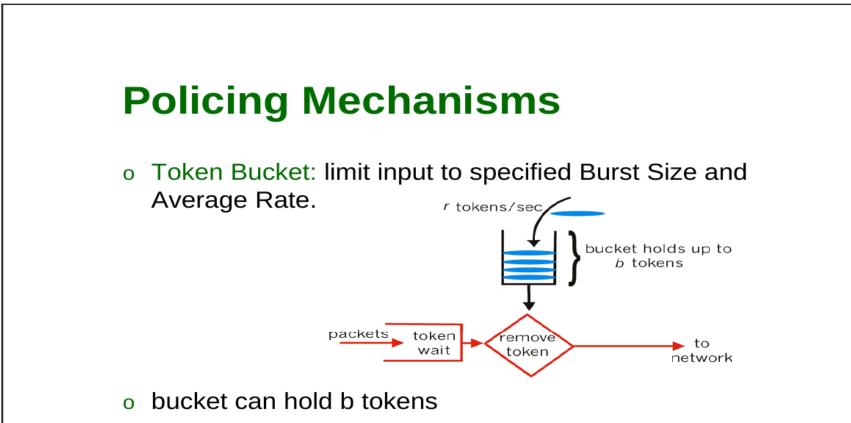
- Q: Assume three different queues (a, b, c).
- Illustrate example sequences in which they can be sent according to WFQ scheduling.
- Suppose that the weights for the queues are
 - a: 0.25,
 - b: 0.25, and
 - c: 0.5.

- Q: Assume three different queues (a, b, c).
- Illustrate example sequences in which they can be sent according to WFQ scheduling.
- Suppose that the weights for the queues are
 - a: 0.25,
 - b: 0.25, and
 - c: 0.5.

 \rightarrow abcc abcc -or- acbc acbc acbc

- Q: Assume three different queues (a, b, c).
- Illustrate example sequences in which they can be sent according to WFQ scheduling.
- Suppose that the weights for the queues are
 - a: 0.25,
 - b: 0.25, and
 - c: 0.5.
- How could the sequence look like if there are no packets in queue 'c'?
- \rightarrow abcc abcc abcc -or- acbc acbc acbc

- Q: Assume three different queues (a, b, c).
- Illustrate example sequences in which they can be sent according to WFQ scheduling.
- Suppose that the weights for the queues are
 - a: 0.25,
 - b: 0.25, and
 - c: 0.5.
- How could the sequence look like if there are no packets in queue 'c'?
- \rightarrow abcc abcc abcc -or- acbc acbc acbc
 - \rightarrow abab abab abab



Token Bucket

- Q: Consider a token bucket filled with a rate of 1,000 tokens/min and a size of 500 tokens.
- Each bit of data consumes one token.
- Does a flow of 20bps conform to this bucket?

Token Bucket

- tokens generated at rate r token/sec unless bucket full
- o over interval of length t: number of packets admitted
- less than or equal to (r t + b).

6: Quality of Service 6-13

com N⁻

Token Bucket

- Q: Consider a token bucket filled with a rate of 1,000 tokens/min and a size of 500 tokens.
- Each bit of data consumes one token.
- Does a flow of 20bps conform to this bucket?
- O bit per second = 1,200 bit per minute
 → excess of 200 bit per minute
- => The flow does not conform to this bucket
- However: If the bucket is full, flow has 2.5 min to adjust (500 tokens / 200 tokens/min)

Delay Guarantees

- Q: Assume a router maintains QoS garantees for two data flows A and B.
- A is policed by a token bucket with a capacity of 100 tokens and a fill rate of 20 token/sec.
- B is policed by a token bucket with a capacity of 200 tokens and a fill rate of 12 token/sec.
- The router uses weighted fair queuing to schedule the packets with a weight of 3 for flow A and a weight of 2 for flow B. It's sending rate is 40 packets/sec.
- What is the upper bound delay that the router can guarantee for both flows?

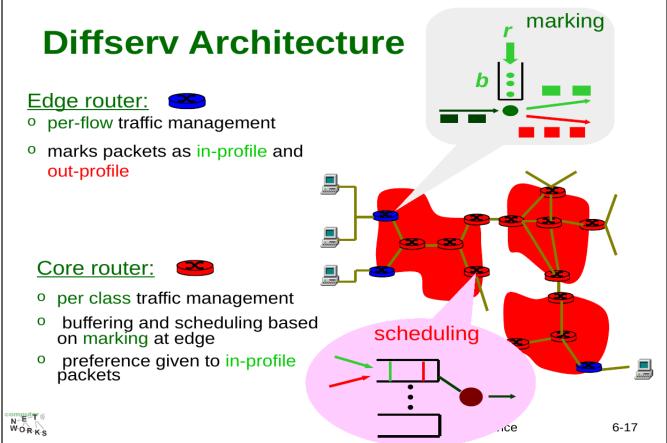
Delay Guarantees (sol.)

^o Flow A

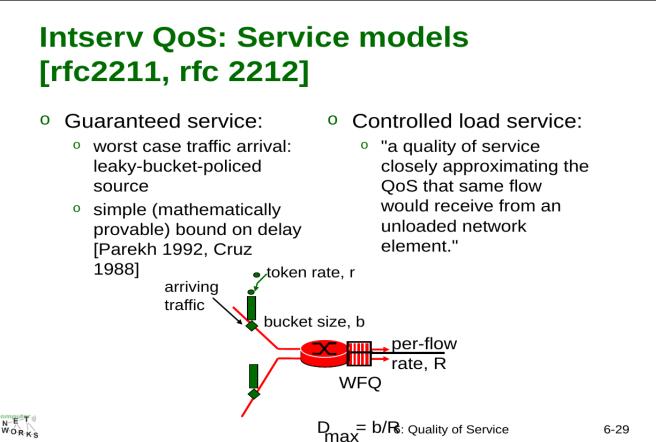
- 20 tokens/sec plus 100 tokens if filled
- Worst case: 100 tokens worth of traffic instantaneously => Queue for A fills up with 100 packets
- Outgoing rate is 40 packets/sec of which A is allocated at least 3/5 => 24 packets/sec
- Worst case: A has average (incoming) flow rate of 20 packets/sec => only at least 4 packets/sec can be removed from the queue
- Last packet in the queue will be delivered after 100/4 = 25 sec

Delay Guarantees (sol.)

^o Flow B


- 12 tokens/sec plus 200 tokens if filled
- Worst case: 200 tokens worth of traffic instantaneously => Queue for B fills up with 200 packets
- Outgoing rate is 40 packets/sec of which A is allocated at least 2/5 => 16 packets/sec
- Worst case: B has average (incoming) flow rate of 12 packets/sec => only at least 4 packets/sec can be removed from the queue
- Last packet in the queue will be delivered after 200/4 = 50 sec

• Q: Briefly compare the IntServ to the DiffServ architecture.



• Q: Briefly compare the IntServ to the DiffServ architecture.

 Q: Briefly compare the IntServ to the DiffServ architecture.

• Q: Briefly compare the IntServ to the DiffServ architecture.

Criteria	DiffServ	IntServ
Based on	Aggregated service classes	Single flow
Level of control	Coarse-grained	Fine-grained
Basic principle	Traffic classification	Resource reservation
States	Edge: per flow Core: none	Every node: per flow
Setup	Per class (long-term)	Per flow
Scalability	Average	Bad

Thank you

Any questions?

