
HANDS-ON SDN

Introduction to SDN: Software-defined Networks – Session I 1

Block Course – Winter 2016/17

David Koll

Where we are now

Introduction to SDN: Software-defined Networks – Session I 2

You have now learned about:
•SDN basic principles

• Basic concepts (CP/DP separation etc.)
• De-facto standard interfaces (OpenFlow)
• Controllers (NOX, POX, …)
• Virtualization (FlowVisor)

Where we want to go

Introduction to SDN: Software-defined Networks – Session I 3

You have now learned about:
•SDN basic principles

• Basic concepts (CP/DP separation etc.)
• De-facto standard interfaces (OpenFlow)
• Controllers (NOX, POX, …)
• Virtualization (FlowVisor)

• Put the stuff learned into practice:
• Implement OpenFlow?
• Implement controllers?
• Implement FlowVisor?

• Rather: learn how to use and program them!
• Hands-on work on state-of-the-art tools

How can we get there?

Introduction to SDN: Software-defined Networks – Session I 4

• Luckily, implementations are available.
• Switches implementing OF
• Controllers implementing OF

• So, how do we run them?
• We don‘t have a hardware testbed at hand
• We don‘t have access to a production network
• We may want to test different things on different network

topologies
• Simulation?

Emulation of Networks

• Network emulation means to run unmodified code interactively on
virtual hardware

• Huge benefit:
• Can actually port our applications seamlessly to hardware

•Challenges:
• Scalability: need to model hosts, switches, links, controllers, …

• Ease-of-Use: easily allow to create different topologies with varying
parameters

• Accuracy: results have to match results obtained from running same
experiment on hardware

Introduction to SDN: Software-defined Networks – Session I 5

Enter Mininet

“Mininet creates a realistic virtual network, running real kernel, switch
and application code, on a single machine (VM, cloud or native), in

seconds, with a single command”[1]

Introduction to SDN: Software-defined Networks – Session I 6

[1] mininet.org

Enter Mininet

“Mininet creates a realistic virtual network, running real kernel, switch
and application code, on a single machine (VM, cloud or native), in

seconds, with a single command”[1]

Introduction to SDN: Software-defined Networks – Session I 7

[1] mininet.org

Enter Mininet

Mininet offers CLI & API to interact with the network

(see demo)

Introduction to SDN: Software-defined Networks – Session I 8

Customize Topologies

Mininet is not limited to the very basic setup

(see demo)

Introduction to SDN: Software-defined Networks – Session I 9

Customize Topologies

You can run your own topologies – created with the Python API

(see demo)

Introduction to SDN: Software-defined Networks – Session I 10

from mininet.topo import Topo

class MyTopo(Topo):

"Simple topology example."

def __init__(self):

"Create custom topo."

Initialize topology

Topo.__init__(self)

Add hosts and switches

leftHost = self.addHost('h1')

rightHost = self.addHost('h2')

leftSwitch = self.addSwitch('s3')

rightSwitch = self.addSwitch('s4')

Add links

self.addLink(leftHost, leftSwitch)

self.addLink(leftSwitch, rightSwitch)

self.addLink(rightSwitch, rightHost)

topos = { 'mytopo': (lambda: MyTopo()) }

Customize Switches and Controllers

You can connect different switches and controllers

(see demo)

Introduction to SDN: Software-defined Networks – Session I 11

Bring Links Up/Down

Change the topology at runtime

(see demo)

Introduction to SDN: Software-defined Networks – Session I 12

Use of Wireshark

We can use Wireshark to debug our network

(see demo)

Introduction to SDN: Software-defined Networks – Session I 13

Limitations?

Limited by single system resources

Limited to Linux kernel (e.g., portability to Windows?)

Limited to real-time

Introduction to SDN: Software-defined Networks – Session I 14

NOTE:

Afternoon lecture today 1 hour later! Starts at 3.15pm!

Introduction to SDN: Software-defined Networks – Session I 15

Exercise!

Time for Exercises 5a and 5b

Introduction to SDN: Software-defined Networks – Session I 16

Custom Topologies with Mininet Python API

Mininet offers some topologies!

Eg: single switch, linear, tree

What if you want to replicate your very own production network?

Create a custom topology!

Introduction to SDN: Software-defined Networks – Session I 17

Low-level API: Nodes and Links

h1 = Host('h1')

h2 = Host('h2')

s1 = OVSSwitch('s1', inNamespace=False)

c0 = Controller('c0', inNamespace=False)

Link(h1, s1)

Link(h2, s1)

h1.setIP('10.1/8')

h2.setIP('10.2/8')

c0.start()

s1.start([c0])

print h1.cmd('ping -c1', h2.IP())

s1.stop()

c0.stop()

Introduction to SDN: Software-defined Networks – Session I 18

Mid-level API: Network Object

net = Mininet()

h1 = net.addHost('h1')

h2 = net.addHost('h2')

s1 = net.addSwitch('s1')

c0 = net.addController('c0')

net.addLink(h1, s1)

net.addLink(h2, s1)

net.start()

print h1.cmd('ping -c1', h2.IP())

CLI(net)

net.stop()

Introduction to SDN: Software-defined Networks – Session I 19

High-level API: Topology templates

class SingleSwitchTopo(Topo):

"Single Switch Topology"

def __init__(self, count=1):

Topo.__init__(self)

hosts = [self.addHost('h%d' % i)

for i in range(1, count + 1)]

s1 = self.addSwitch('s1')

for h in hosts:

self.addLink(h, s1)

topos = {'topo' : (lambda: SingleSwitchTopo())}

Introduction to SDN: Software-defined Networks – Session I 20

Example Topology – Research Lab

Introduction to SDN: Software-defined Networks – Session I

21

h1 h2 h3 h4

h5 h6 h7 h8

server3server2server1

Switch 2

Switch 1

Switch 3

Each: 1gbps, 15ms delay
Each: 10gbps, 5ms delay

Each: 100gbps, 1ms delay

Example Topology – Research Lab

Introduction to SDN: Software-defined Networks – Session I 22

sudo mn
–-custom rlab.py
–-topo rlab
–-link=tc

The POX Controller

Introduction to SDN: Software-defined Networks – Session I 23

• Invoke with: ./pox.py [options] <component>

• <options> can be:
• --verbose : display debugging info

• --no-openflow: do not automatically listen for OpenFlow connections

•<components> are the real meat!
• There are some basic components we will use for this class
• Intention: developers will build their own components

The POX Controller - Components

Introduction to SDN: Software-defined Networks – Session I 24

• Some stock components:

• py
• forwarding.hub
• forwarding.l2_learning
• forwarding.l2_pairs
• forwarding…..

• openflow.webservice
• Creates a webinterface to interact with OpenFlow

• openflow.of_01
• Communicates with OpenFlow 1.0 switches

./pox.py forwarding.l2_learning ?

The POX Controller - Components

Introduction to SDN: Software-defined Networks – Session I 25

• Developing your own components:

• https://openflow.stanford.edu/display/ONL/POX+Wiki#POXWiki-
DevelopingyourownComponents

• In general: POX wiki a good place to look for help
• https://openflow.stanford.edu/display/ONL/POX+Wiki

https://openflow.stanford.edu/display/ONL/POX+Wiki#POXWiki-DevelopingyourownComponents
https://openflow.stanford.edu/display/ONL/POX+Wiki

POX APIs

Introduction to SDN: Software-defined Networks – Session I 26

• When writing or modifying components (you will do the latter in this
course), POX offers some helpful API.
• E.g.: API for packet handling: pox.lib.packet

Example: Get L2 source and destination from a packet

def _handle_PacketIn(self, event):
packet = event.parsed # POX is based on events!
src_of_packet = packet.src #returns an EthAddr
dst_of_packet = packet.dst #also returns an EthAddr

POX APIs

Introduction to SDN: Software-defined Networks – Session I 27

• When writing or modifying components (you will do the latter in this
course), POX offers some helpful API.
• E.g.: API for packet handling: pox.lib.packet

Example: Get source IP from a packet

def _handle_PacketIn(self, event):
"check if packet is an IP packet"
packet = event.parsed
ip = packet.find('ipv4') #check if packet is IP
if ip is None: #packet is not IP

return
print "Source IP: ", ip.srcip

POX and Openflow

Introduction to SDN: Software-defined Networks – Session I 28

• Up front: Best to read POX wiki:
• https://openflow.stanford.edu/display/ONL/POX+Wiki#POXWiki-

OpenFlowinPOX

•Usually, switches connect to POX automatically via OpenFlow
• Exception: no-openflow option (see previous slides)

• So – how do we communicate with them?

https://openflow.stanford.edu/display/ONL/POX+Wiki#POXWiki-OpenFlowinPOX

Coding in POX – Connection Elements

Introduction to SDN: Software-defined Networks – Session I 29

• Upon connecting to POX, a switch is associated with a Connection
object

• Use that object‘s send() method to send messages to the switch

• Connection object will raise events on the corresponding switch
• Create event handlers for events you are interested in

In Practice

Introduction to SDN: Software-defined Networks – Session I 30

def launch ():
“Starts the Component“
core.openflow.addListenerByName("PacketIn",

_handle_packetin)

from pox.core import core
import pox.openflow.libopenflow_01 as of

log = core.getLogger()

log.info("Switch running.")

• Launch our component.

• Add one event listener for PacketIn

In Practice

Introduction to SDN: Software-defined Networks – Session I 31

def _handle_packetin (event):
“Handle PacketIn“
packet = event.parsed
send_packet(event, of.OFPP_ALL) #broadcast

log.debug("Broadcasting %s.%i -> %s.%i" %
(packet.src, event.ofp.in_port,
packet.dst, of.OFPP_ALL))

• Write packet handler (here: flood packet)

In Practice

Introduction to SDN: Software-defined Networks – Session I 32

def send_packet (event, dst_port):
“Instructs switch to send packet via dst_port“

• Write send_packet method (simplified)

msg = of.ofp_packet_out(in_port=event.ofp.in_port)
msg.data = event.ofp.data
msg.actions.append(of.ofp_action_output(port = dst_port))

event.connection.send(msg)

In Practice

Introduction to SDN: Software-defined Networks – Session I 33

• Code on previous slides implemented a hub behaviour

• Exercise: modify hub behaviour to learning switch behaviour

Exercise!

Time for Exercise 6

Introduction to SDN: Software-defined Networks – Session I 34

FlowVisor

Introduction to SDN: Software-defined Networks – Session I 35

• Exercise 5: You have already installed FlowVisor

• Recall: FlowVisor is an extra layer between controllers and switches

FlowVisor

Introduction to SDN: Software-defined Networks – Session I 36

• Basic procedure:

• Create and start your network topology with Mininet
• Connect Flowvisor to switches on standard port
• Slice network with Flowvisor
• Connect Controllers to Flowvisor slices

FlowVisor

Introduction to SDN: Software-defined Networks – Session I 37

• Basic procedure:

• Create and start your network topology with Mininet
• Connect Flowvisor to switches on standard port
• Slice network with Flowvisor
• Connect Controllers to Flowvisor slices

Connecting FlowVisor

Introduction to SDN: Software-defined Networks – Session I 38

$ sudo /etc/init.d/flowvisor start

• FlowVisor operates outside of Mininet!

(see demo)

• Afterwards: use flowvisor control (command: fvctl) to slice

Slicing the Network with FlowVisor

Introduction to SDN: Software-defined Networks – Session I 39

$ fvctl –f /dev/null set-config --enable-topo-ctrl
$ sudo /etc/init.d/flowvisor restart

• First: enable topology controller

(see demo)

• -f /dev/null option: -f points to pwd file – in our case: empty pw

Let’s slice the research lab

Introduction to SDN: Software-defined Networks – Session I

40

h1 h2 h3 h4

h5 h6 h7 h8

server3server2server1

Switch 2

Switch 1

Switch 3

Each: 1gbps, 15ms delay
Each: 10gbps, 5ms delay

Each: 100gbps, 1ms delay

Slicing the Network with FlowVisor

Introduction to SDN: Software-defined Networks – Session I 41

$ fvctl –f /dev/null list-slices
$ fvctl –f /dev/null list-flowspace
$ fvctl –f /dev/null list-datapaths
$ fvctl –f /dev/null list-links

• Want to create slice for servers. Have a look at topology:

(see demo)

Slicing the Network with FlowVisor

Introduction to SDN: Software-defined Networks – Session I 42

• Add slices with

fvctl add-slice [options] <slicename>
<controller-url> <admin-email>

$ fvctl –f /dev/null add-slice servers
tcp:localhost:10001 admin@servers

(see demo)

Add Flowspaces

Introduction to SDN: Software-defined Networks – Session I 43

• Add flowspaces with

fvctl add-flowspace [options] <flowspace-name> <dpid>
<priority> <match> <slice-perm>

$ fvctl –f /dev/null add-flowspace switch1-port2
1 1 in_port=2 servers=7

• Permissions: Bitmask
• 1=DELEGATE, 2=READ, 4=WRITE

(see demo)

Connect Controllers

Introduction to SDN: Software-defined Networks – Session I 44

• Start controller and connect to FlowVisor

(see demo)

Test Slicing

Introduction to SDN: Software-defined Networks – Session I 45

• Servers should be able to ping each other, but not any hosts

(see demo)

Exercise!

Time for Exercise 7

Introduction to SDN: Software-defined Networks – Session I 46

