HANDS-ON SDN

You have now learned about:
*SDN basic principles
* Basic concepts (CP/DP separation etc.)
e De-facto standard interfaces (OpenFlow)
e Controllers (NOX, POX, ...)
e Virtualization (FlowVisor)

Where we want to go

You have now learned about:
*SDN basic principles
* Basic concepts (CP/DP separation etc.)
e De-facto standard interfaces (OpenFlow)
e Controllers (NOX, PO, ...)
e Virtualization (FlowVisor)

* Put the stuff learned into practice:
 |Implement OpenFlow?
 |Implement controllers?

* Implement FlowVisor?

 Rather: learn how to use and program them!
* Hands-on work on state-of-the-art tools

WoR Ks Introduction to SDN: Software-defined Networks — Session |

How can we get there?

* Luckily, implementations are available.
* Switches implementing OF
* Controllers implementing OF

* So, how do we run them?
* We don‘t have a hardware testbed at hand
* We don‘t have access to a production network

* We may want to test different things on different network
topologies

* Simulation?

WoR Ks Introduction to SDN: Software-defined Networks — Session |

Emulation of Networks

* Network emulation means to run unmodified code interactively on
virtual hardware

* Huge benefit:
* Can actually port our applications seamlessly to hardware

* Challenges:
* Scalability: need to model hosts, switches, links, controllers, ...

* Ease-of-Use: easily allow to create different topologies with varying
parameters

e Accuracy: results have to match results obtained from running same
experiment on hardware

T
N E
WoR Ks Introduction to SDN: Software-defined Networks — Session |

“Mininet creates a realistic virtual network, running real kernel, switch
and application code, on a single machine (VM, cloud or native), in

seconds, with a single command”[1]

. hosts

’ controllers
> sudo mn * A’ .. switches

[1] mininet.org

Enter Mininet

“Mininet creates a realistic virtual network, running real kernel, switch
and application code, on a single machine (VM, cloud or native), in
seconds, with a single command”[1]

[1] mininet.org

T
N E
WoR Ks Introduction to SDN: Software-defined Networks — Session |

Mininet offers CLI & API to interact with the network

(see demo)

Mininet is not limited to the very basic setup

(see demo)

from mininet.topo import Topo

\ class MyTopo(Topo): 1
"Simple topology example."

def _init_ (self):
"Create custom topo."

Initialize topology
Topo. init_ (self)

Add hosts and switches

leftHost = self.addHost('h1')
rightHost = self.addHost('h2')
leftSwitch = self.addSwitch('s3')
rightSwitch = self.addSwitch('s4')

Add links

self.addLink(leftHost, leftSwitch)
self.addLink(leftSwitch, rightSwitch)
self.addLink(rightSwitch, rightHost)

topos = { 'mytopo': (lambda: MyTopo()) }

You can connect different switches and controllers

(see demo)

Change the topology at runtime

(see demo)

We can use Wireshark to debug our network

(see demo)

Limited by single system resources

Limited to Linux kernel (e.g., portability to Windows?)

Limited to real-time

Afternoon lecture today 1 hour later! Starts at 3.15pm!

Time for Exercises 5a and 5b

Custom Topologies with Mininet Python API

Mininet offers some topologies!
Eg: single switch, linear, tree
What if you want to replicate your very own production network?

Create a custom topology!

WoR Ks Introduction to SDN: Software-defined Networks — Session |

17

Low-level APIl;: Nodes and Links

hl = Host('hl')

h2 = Host('h2')

sl = 0OVSSwitch('sl1l', inNamespace=False)
c@® = Controller('c@', inNamespace=False)
Link(h1, s1)

Link(h2, s1)

hl.setIP('10.1/8")

h2.setIP('10.2/8')

co.start()

sl.start([cO])

print hl.cmd('ping -c1', h2.IP())
sl.stop()

cO.stop()

T
N E
WoR Ks Introduction to SDN: Software-defined Networks — Session |

18

net = Mininet()

hl = net.addHost('hl')

h2 = net.addHost('h2')

sl = net.addSwitch('s1"')

cO = net.addController('co0')
net.addLink(h1, s1)
net.addLink(h2, s1)
net.start()

print hl.cmd('ping -cl', h2.IP())
CLI(net)

net.stop()

High-level API: Topology templates

class SingleSwitchTopo(Topo):

"Single Switch Topology"

def init (self, count=1l):
Topo. init (self)
hosts = [self.addHost('h%d' % i)

for i in range(1, count + 1)]
sl = self.addSwitch('s1')
for h in hosts:
self.addLink(h, s1)

topos = {'topo' : (lambda: SingleSwitchTopo())}

WoR Ks Introduction to SDN: Software-defined Networks — Session |

20

Each: 100gbps, 1ms delay

> ¢

Each: 1gbps, 15ms delay "

Each: 10gbps, 5ms delay

Example Topology — Research Lab

1 #!/y3r/bin/python

2 frommininet.topo import Topo

z [<]clazs Researchlab (Topo) :

8 [def init (=3elf):

WORKS

Topo. _init (3elf)

testbedhosts = [3elf.addHost('hid' @i) foriinrange(l, 9)]|
gimservers = [gelf.addHost("zim3d"' 8 i) foriinrange({l, 4}]

3l =3elf.addSwitch{ 's1") # TCE switch
32 =3elf.addSwitch('s2") # Ieathed switch
33i=3elf.addSwitch({ '=3") # Jerver awitch

5 = forh in testbedhosta:
i i self.addlink{h, 32 , bw=1, delay="1-m=")
5 = for srv in simservers:
L i self.addlink({ srv,33, bw=10, delay="1m=")
1 self.addlink{sZ, 31, bw=100)
2 o gelf.addlink{=s3, 31, bw=100)
op! topos={"'rlak' : {lamkda: Researchlab())]
NET

sudo mn

—--custom rlab.py
--topo rlab
—--link=tc

Introduction to SDN: Software-defined Networks — Session |

22

The POX Controller

* Invoke with: ./pox.py [options] <component>

e <options> can be:
» --verbose : display debugging info
* --no-openflow: do not automatically listen for OpenFlow connections

e <components> are the real meat!
* There are some basic components we will use for this class
* Intention: developers will build their own components

WoR Ks Introduction to SDN: Software-defined Networks — Session |

23

The POX Controller - Components

* Some stock components:
° py
e forwarding.hub /pox.py forwarding.l2_learning ?
 forwarding.|2_learning
e forwarding.I2_pairs
* forwarding.....

* openflow.webservice
* Creates a webinterface to interact with OpenFlow

* openflow.of 01
 Communicates with OpenFlow 1.0 switches

WoR Ks Introduction to SDN: Software-defined Networks — Session |

24

The POX Controller - Components

* Developing your own components:

* https://openflow.stanford.edu/display/ONL/POX+Wiki#POXWiki-
DevelopingyourownComponents

*In general: POX wiki a good place to look for help
* https://openflow.stanford.edu/display/ONL/POX+WiKki

WoR Ks Introduction to SDN: Software-defined Networks — Session | 25

https://openflow.stanford.edu/display/ONL/POX+Wiki#POXWiki-DevelopingyourownComponents
https://openflow.stanford.edu/display/ONL/POX+Wiki

POX APIs

* When writing or modifying components (you will do the latter in this
course), POX offers some helpful API.
 E.g.: API for packet handling: pox.1lib.packet

Example: Get L2 source and destination from a packet

def _handle PacketIn(self, event):
packet = event.parsed # POX 1is based on events!
src_of _packet = packet.src #returns an EthAddr
dst _of packet = packet.dst #also returns an EthAddr

WoR Ks Introduction to SDN: Software-defined Networks — Session | 26

POX APIs

* When writing or modifying components (you will do the latter in this
course), POX offers some helpful API.
 E.g.: API for packet handling: pox.1lib.packet

Example: Get source IP from a packet

def _handle PacketIn(self, event):
"check if packet is an IP packet”
packet = event.parsed
ip = packet.find('ipv4') #check if packet is IP
if ip is None: #packet is not IP
return
print "Source IP:

, ip.srcip

WoR Ks Introduction to SDN: Software-defined Networks — Session |

27

POX and Openflow

* Up front: Best to read POX wiki:

e https://openflow.stanford.edu/display/ONL/POX+Wiki#POXWiki-
OpenFlowinPOX

* Usually, switches connect to POX automatically via OpenFlow
* Exception: no-opentlow option (see previous slides)

e So — how do we communicate with them?

WoR Ks Introduction to SDN: Software-defined Networks — Session |

28

https://openflow.stanford.edu/display/ONL/POX+Wiki#POXWiki-OpenFlowinPOX

Coding in POX — Connection Elements

* Upon connecting to POX, a switch is associated with a Connection
object

 Use that object’s send () method to send messages to the switch

 Connection object will raise events on the corresponding switch
* Create event handlers for events you are interested in

WoR Ks Introduction to SDN: Software-defined Networks — Session |

29

* Launch our component.
 Add one event listener for PacketIn

from pox.core import core
import pox.openflow.libopenflow 01 as of

log = core.getlLogger()

def launch ():
“Starts the Component*
core.openflow.addListenerByName("PacketIn",
_handle _packetin)

log.info("Switch running.™)

* Write packet handler (here: flood packet)

def handle packetin (event):
“Handle PacketIn*

packet = event.parsed
send packet(event, of.OFPP ALL) #broadcast

log.debug("Broadcasting %s.%i -> %s.%i" %

(packet.src, event.ofp.in_port,
packet.dst, of.OFPP_ALL))

e Write send packet method (simplified)

def send packet (event, dst port):
“Instructs switch to send packet via dst_port
msg = of.ofp packet out(in_port=event.ofp.in port)
msg.data = event.ofp.data
msg.actions.append(of.ofp_action_output(port = dst port))

event.connection.send(msg)

* Code on previous slides implemented a hub behaviour

* Exercise: modify hub behaviour to learning switch behaviour

Time for Exercise 6

FlowVisor

* Exercise 5: You have already installed FlowVisor

* Recall: FlowVisor is an extra layer between controllers and switches

WORKS

Alice

IKE'_I,I': |
Bob [Cathy] I EPEHHT I
NOX Nox | [=ommeemen
x5 \ //15
(FlowVisor] Doug

NOX

FlowVisor (FlowVisor)

N\

Switch IEwitch Switch| | Switch|] | Switch

Introduction to SDN: Software-defined Networks — Session |

35

* Basic procedure:
* Create and start your network topology with Mininet
* Connect Flowvisor to switches on standard port
* Slice network with Flowvisor
* Connect Controllers to Flowvisor slices

* Basic procedure:

* Connect Flowvisor to switches on standard port
e Slice network with Flowvisor
e Connect Controllers to Flowvisor slices

* FlowVisor operates outside of Mininet!

$ sudo /etc/init.d/flowvisor start

(see demo)

» Afterwards: use flowvisor control (command: fvctl) to slice

Slicing the Network with FlowVisor

* First: enable topology controller

$ fvctl -f /dev/null set-config --enable-topo-ctrl
$ sudo /etc/init.d/flowvisor restart

(see demo)

* -f /dev/null option: -f points to pwd file — in our case: empty pw

WoR Ks Introduction to SDN: Software-defined Networks — Session |

39

Each: 100gbps, 1ms delay

> ¢

Each: 1gbps, 15ms delay -

Each: 10gbps, 5ms delay

Slicing the Network with FlowVisor

* Want to create slice for servers. Have a look at topology:

$ fvctl -f /dev/null list-slices

$ fvctl -f /dev/null list-flowspace
$ fvctl -f /dev/null list-datapaths
$ fvctl -f /dev/null list-1links

(see demo)

WoR Ks Introduction to SDN: Software-defined Networks — Session |

41

e Add slices with

fvctl add-slice [options] <slicename>
<controller-url> <admin-email>

$ fvctl -f /dev/null add-slice servers
tcp:localhost:10001 admin@servers

(see demo)

* Add flowspaces with

fvctl add-flowspace [options] <flowspace-name> <dpid>
<priority> <match> <slice-perm>

$ fvctl -f /dev/null add-flowspace switchl-port2
1 1 in_port=2 servers=7

* Permissions: Bitmask
« 1=DELEGATE, 2=READ, 4=WRITE

(see demo)

e Start controller and connect to FlowVisor

(see demo)

* Servers should be able to ping each other, but not any hosts

(see demo)

Time for Exercise 7

