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Probabilistic graphical models
Introduction

In the previous models, probabilistic inference was a
prominent aspect.

We will now discuss probabilistic graphical models

Some of the classification approaches discussed earlier can be
described by such models

Benefits of probabilistic graphical models

→ Simple way to visualise the structure of a probabilistic model

→ Insights into properties of the model, including conditional
independence

→ Graphical representation of complex computations might help
to perform inference and learning
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Probabilistic graphical models
Definition

A probabilistic graphical model comprises vertices connected
by edges

Vertices represent random variables or groups of variables
Edges represent probabilistic relationships between variables

Probabilistic graphical model

The graph captures the way in which the joint distribution
over all of the random variables can be decomposed into a
product of factors each depending only on a subset of variables
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Probabilistic graphical models

Example

Consider an arbitrary joint distribution P[a, b, c].

We can then write

P[a, b, c] = P[b|a, c]P[a, c]

= P[b|a, c]P[c |a]P[a]
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Probabilistic graphical models

Example

Similarly we can define a joint distribution

P[x1, . . . , xn] = P[xn|x1, . . . , xn−1] . . .P[x2|x1]P[x1]

These graphs are fully connected.
(One edge between every pair of nodes)

The actual absence of links in the graph covers intersting
information about the properties of the class of distributions
represented
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Probabilistic graphical models
Definition

A general distribution for a graph with n nodes is

P[x ] =
n∏

i=1

P[xi |parents of vertex xi ]

Remark: Bayesian networks are represented in this way
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Bayesian decision theory

The probability of events can be estimated by repeatedly
generating events and counting their occurrences

When, however, an event only very seldom occurs or is hard to
generate, other methods are required

Example:

Probability that the Arctic ice cap will have disappeared by the end
of this century

In such cases, we would like to model uncertainty

In fact, it is possible to represent uncertainty by probability
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Example
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Bayesian Networks

Directed acyclic Graph
with one vertex for each
feature or class
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Left side of the
distribution table in each
node contains a column
for every ingoing edge
from a parent node

Each row defines a
probability distribution
over the values of a
node’s attribute
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Prediction of class
probabilities

For a particular sample,
multiply all corresponding
probabilities

14 / 88

22.06.2015 Stephan Sigg Machine Learning and Pervasive Computing
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Example

outlook rainy

temperature cool

humidity high

windy true

play = no 0.367 · 0.167 ·
0.385 · 0.25 ·
0.429 = 0.0025

play = yes = 0.0077
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Example

play = no 0.367 · 0.167 · 0.385 · 0.25 · 0.429 = 0.0025

play = yes = 0.0077

P[play = no] 0.0025
0.367+0.167+0.385+0.25+0.429 = 0.245

P[play = yes] 0.0077
0.875+0.333+0.111+0.5+0.633 = 0.755

Remark Multiplication of all probabilities is valid due to
conditional independence: Multiplication is valid
provided that each node is independent from parents
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Introduction Bayesian Networks Näıve Bayes Bayesian Curve fitting Markov Conditional random fields

Example

play = no 0.367 · 0.167 · 0.385 · 0.25 · 0.429 = 0.0025

play = yes = 0.0077

P[play = no] 0.0025
0.367+0.167+0.385+0.25+0.429 = 0.245

P[play = yes] 0.0077
0.875+0.333+0.111+0.5+0.633 = 0.755

Remark Multiplication of all probabilities is valid due to
conditional independence: Multiplication is valid
provided that each node is independent from parents

16 / 88

22.06.2015 Stephan Sigg Machine Learning and Pervasive Computing
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Conditional indepencence

Multiplication follows result of chain rule in probability theory (joint
probability of m variables can be decomposed into its product):

P[a1, a2, . . . , an] =
n∏

i=1

P[ai |ai−1, . . . , a1]

Since the Bayesian network is an acyclic graph, nodes can be
ordered to give all ancestors of a node ai indices smaller than i
Then, due to conditional indepencence:

P[a1, a2, . . . , an] =
n∏

i=1

P[ai |ai−1, . . . , a1] =
n∏

i=1

P[ai |ai ’s parents]
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Introduction Bayesian Networks Näıve Bayes Bayesian Curve fitting Markov Conditional random fields

Learning Bayesian Networks

In order to learn/train a Bayesian network we require

1 A function to evaluate a given network

2 A method to search through the space of possible networks
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In order to learn/train a Bayesian network we require

1 A function to evaluate a given network

2 A method to search through the space of possible networks

Evaluate a given network

Probability assigned to given instance is multiplied over all
instances.

To avoid very small numbers, the log likelihood is computed:

Log likelihood sum of the logarithms of the probabilities
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Learning Bayesian Networks
In order to learn/train a Bayesian network we require

1 A function to evaluate a given network
2 A method to search through the space of possible networks

Search through the space of possible networks

Vertices are predefined by features and classes

Network structure is learned by a search over the
space spanned by all possible edges

Caveat: Log likelihood rewards adding of further edges
(Network will overfit).

Solution 1 Adding a penalty for the complexity of the network

Solution 2 Use cross-validation to estimate the goodnesss of a fit
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Popular methods to evaluate the quality of a network

Akaike Information Criterion (AIC)

AIC score = −(Log likelihood) + K

MDL metric

MDL score = −(Log likelihood) +
K

2
logN

K Number of independent estimates in all probability
tables

N Number of instances in the data 19 / 88
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Algorithms to learn Bayesian networks
A simple and fast algorithm to learn Bayesian networks is called
the K2 algorithm

K2 algorithm

Init: Given ordering of the featuers (vertices)

Iteratively: Process each node in turn by greedily adding edges
from previously processed nodes

In each step: Add the edge that maximizes the network’s score

Until: no further improvement → turn to the
next node

Overfitting: Can be avoided by restricting the maximum number
of parents for each node

Multistarts: Solution reached dependent on initial ordering
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Data structures for fast learning

Learning Bayesian networks involves a lot of counting

In order to avoid redundant computations,
all-dimensions (AD) trees might be employed

Creation of such tree for each node in the Bayes network
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Data structures for fast learning

All possible combinations can be directly read from the tree

→ Node count is low since some information is implicit
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Data structures for fast learning

Example

Humidity normal

Windy true

Play yes

(No node in the tree but one occurrence of [normal-true-no]
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Data structures for fast learning
AD trees pay off only if the data contains many instances
(e.g. thousands)

Therefore, usually a cutoff parameter k is employed that
specifies whether or not an AD tree is created for a specific
node
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Näıve Bayes

Näıve Bayes

Bayes Networks require indenpendency of events.

Often, this can not be guaranteed for real-world problems and
events

→ Näıve Bayes is näıve in the sense that independence is
assumed against one’s better judgement
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Näıve Bayes classificaiton

WiFi Accelerometer Audio Light At work
yes no yes no yes no yes no yes no

<3 APs 3 7 walking 4 8 quiet 8 5 outdoor 4 7 16 14
[3, 5] 5 5 standing 1 4 medium 6 3 indoor 12 7
>5 APs 8 2 sitting 11 2 loud 2 6

WiFi Accelerometer Audio Light At work

4 APs sitting medium indoors ???

Likelihood of YES: 5
16 ·

11
16 ·

6
16 ·

12
16 = 0.06

Likelihood of NO: 5
14 ·

2
14 ·

3
14 ·

7
14 = 0.005
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Introduction Bayesian Networks Näıve Bayes Bayesian Curve fitting Markov Conditional random fields

Näıve Bayes classificaiton

WiFi Accelerometer Audio Light At work

4 APs sitting medium indoors ???
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16 ·

6
16 ·
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16 ·
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Likelihood of NO: 5
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7
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Probability of YES: 0.032
0.032+0.0026 ≈ 0.925

Probability of NO: 0.0026
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Näıve Bayes classificaiton

Likelihood of YES: 5
16 ·

11
16 ·

6
16 ·

12
16 ·

16
30 = 0.032

Likelihood of NO: 5
14 ·

2
14 ·

3
14 ·

7
14 ·

14
30 = 0.0026

Probability of YES: 0.032
0.032+0.0026 ≈ 0.925

Probability of NO: 0.0026
0.0026+0.032 ≈ 0.075

This is due to bayes rule:

P[Hypothesis|Evidence] =
P[Evidence|Hypothesis]P[Hypothesis]

P[Evidence]
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Näıve Bayes classificaiton
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Probability of NO: 0.0026
0.0026+0.032 ≈ 0.075

This is due to bayes rule:

P[Hypothesis|Evidence] =
P[Evidence|Hypothesis]P[Hypothesis]

P[Evidence]

P[work|Evidence] =
P[E1|work]P[E2|work]P[E3|work]P[E4|work]P[work = YES]

P[Evidence]

P[work|E] =
P[5 APs|work]P[sitting|work]P[medium|work]P[indoors|work]P[work]

P[Evidence]
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Näıve Bayes classificaiton

The name Näıve Bayes stems from the fact that

1 the method is based on Bayes’ rule

2 it näıvely assumes independence among events

Note that it is only valid to multiply probabilities given the class
when the events are independent.

However, Even though the latter assumption is a realistic one in
realistic settings, the performance of Näıve Bayes on real data is
good.
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when the events are independent.

However, even though the latter assumption is unrealistic in real
settings, the performance of Näıve Bayes on real data is good.
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Näıve Bayes classificaiton

Be careful with impossible events!

In the case that an attribute value does not occur in the training
set in conjuction with every class value:

Assume: Walking always associated with ’NO’
(→ P[walking|yes] = 0)

Then: P[yes|E] = 0
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Näıve Bayes classificaiton

Solution (Laplace estimator)

Add small constant µ
n to all numerators and compensate by adding

µ to each of the n denominators:

5

16
· 11

16
· 6

16
· 12

16

→
5 + µ

4

16 + µ
·

11 + µ
4

16 + µ
·

6 + µ
4

16 + µ
·

12 + µ
4

16 + µ

In practice, these small modifications make little difference given
that there are sufficient training examples.
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Näıve Bayes classificaiton

Example (Laplace estimator)

Add 1 to all numerators and compensate by adding 4 to each of
the 4 denominators:

5

16
· 11

16
· 6

16
· 12

16

→ 6

20
· 12

20
· 7

20
· 16

20

Likelihood of YES: 6
20 ·

12
20 ·

7
20 ·

16
20 ·

16
30 = 0.022

Likelihood of NO: 6
18 ·

3
18 ·

4
18 ·

8
18 ·

14
30 = 0.0026

Probability of YES: 0.022
0.022+0.0026 ≈ 0.894

Probability of NO: 0.0026
0.0026+0.022 ≈ 0.105

In practice, these small modifications make little difference given
that there are sufficient training examples.
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Probabilistic graphical models
Bayesian Curve fitting

W Polynomial coefficients

X = (x1, . . . , xn)T Input data

Y = (y1, . . . , yn)T Observed data (Ground truth)

σ2 Noise variance

α representation of the precision of the Gaussian prior
over W

P[Y ,W ] = P[W ]
n∏

i=1

P[yi |W ]

(omitting deterministic parameters)
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Probabilistic graphical models
Bayesian Curve fitting

P[Y ,W |X , α, σ2] = P[W |α]
n∏

i=1

P[yi |W , xi , σ
2]

Plate notation 41 / 88
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Probabilistic graphical models
Prediction of y given the model and a new sample x as

P[y ,Y ,W |x ,X , α, σ2] =

[
n∏

i=1

P[yi |W , xi , σ
2]

]
P[W |α]P[y |x ,W , σ2]

Sum rule of probability leads to predictive distribution for y :

P[y |x ,X , α,Y , σ2] ∝
∫
P[y ,Y ,W |x ,X , α, σ2]dW
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Bayesian curve fitting

M=9

Mean of the predictive distribution

+/- 1 standard deviation

y
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Markov chains

Markov processes

Intensively studied

Major branch in the theory of stochastic processes

A. A. Markov (1856 – 1922)

Extended by A. Kolmogorov to chains of infinitely many states

’Anfangsgründe der Theorie der Markoffschen Ketten mit
unendlich vielen möglichen Zuständen’ (1936) 1

1
A. Kolmogorov,Anfangsgründe der Theorie der Markoffschen Ketten mit unendlich vielen möglichen

Zuständen, 1936.
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Markov chains

Theory applied to a variety of algorithmic problems

Standard tool in many probabilistic applications

Intuitive graphical representation

Suitable for graphical illustration of stochastic processes

Popular for their simplicity and easy applicability to huge set of
problems2

2
William Feller, An introduction to probability theory and its applications, Wiley, 1968.
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Markov chains

Independent trials of events

Set of possible outcomes of a measurement Ei associated with
occurrence probability pi

Probability to observe sample sequence:

P{(E1,E2, . . . ,Ei )} = p1p2 · · · pi

Dependent trials of events

Probability to observe specific sequence E1,E2, . . . ,Ei

obtained by conditional probability:

P(Ei |E1,E2, . . . ,Ei−1)
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Markov chains

Independent random variables

Number of coin tosses until ’head’ is observed

Radioactive atoms always have same probability of decaying
at next trial

Dependent random variables

Knowledge that no car has passed for five minutes increases
expectation that it will come soon.

Coin tossing:

Probability that the cumulative numbers of heads and tails will
equalize at the second trial is 1

2
Given that they did not, the probability that they equalize after
two additional trials is only 1

4
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Markov property

In the theory of stochastic processes the described lack of memory
is connected with the Markov property.

Outcome depends exclusively on outcome of directly preceding trial

Every sequence (Ei ,Ej ) has a conditional probability pij

Additionally: Probability ai of the event Ei 49 / 88
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Markov chains

Markov chain

A sequence of observations E1,E2, . . . is called a Markov chain if
the probabilities of sample sequences are defined by

P(E1,E2, . . . ,Ei ) = a1 · p12 · p23 · · · · · p(i−1)i .

and fixed conditional probabilities pij that the event Ei is observed
directly in advance of Ej .
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Markov chains

Described by probability a for initial distribution and matrix P of
transition probabilities.

P =

 p11 p12 p13 · · ·
p21 p22 p23 · · ·

...
...

...
. . .


P is called a stochastic matrix

(Square matrix with non-negative entries that sum to 1 in each row)
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Markov chains

pk
ij denotes probability that Ej is observed exactly k observations

after Ei was observed.

Calculated as the sum of the probabilities for all possible paths
EiEi1 · · ·Eik−1

Ej of length k

We already know
p1

ij = pij

Consequently:

p2
ij =

∑
ν

piν · pνj

p3
ij =

∑
ν

piν · p2
νj
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Markov chains
By mathematical induction:

pn+1
ij =

∑
ν

piν · pn
νj

and
pn+m

ij =
∑
ν

pm
iν · pn

νj =
∑
ν

pn
iν · pm

νj

Similar to matrix P we can create a matrix Pn that contains all pn
ij

pn+1
ij obtained from Pn+1: Multiply row i of P with column j of Pn

Symbolically: Pn+m = PnPm.

Pn =

 pn
11 pn

12 pn
13 · · ·

pn
21 pn

22 pn
23 · · ·

...
...

...
. . .
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Markov chains
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Hidden Markov Models

Make a sequence of decisions for a process that is not directly
observable3

Current states of the process might be impacted by prior states

HMM often utilised in speech recognition or gesture recognition

3
Richard O. Duda, Peter E. Hart and David G. Stork, Pattern classification, Wiley interscience, 2001.
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Hidden Markov Models

At every time step t the system is in an internal state ω(t)

Additionally, we assume that it emits a (visible) symbol v(t)

Only access to visible symbols and not to internal states
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Hidden Markov Models

Probability to be in state ωj (t) and emit symbol vk (t):

P(vk (t)|ωj (t)) = bjk

Transition probabilities: pij = P(ωj (t + 1)|ωi (t))

Emission probability: bjk = P(vk (t)|ωj (t)) 57 / 88
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Hidden Markov Models

Central issues in hidden Markov models:

Evaluation problem Determine the probability that a particular
sequence of visible symbols V n was generated by a
given hidden Markov model

Decoding problem Determine the most likely sequence of hidden
states ωn that led to a specific sequence of
observations V n

Learning problem Given a set of training observations of visible
symbols, determine the parameters pij and bjk for a
given HMM
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Hidden Markov Models – Evaluation problem
Probability that model produces a sequence V n:

P(V n) =
∑
ωn

P(V n|ωn)P(ωn)

Also:

P(ωn) =
n∏

t=1

P(ω(t)|ω(t − 1))

P(V n|ωn) =
n∏

t=1

P(v(t)|ω(t))

Together:

P(V n) =
∑
ωn

n∏
t=1

P(v(t)|ω(t))P(ω(t)|ω(t − 1))
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Hidden Markov Models – Evaluation problem

Probability that model produces a sequence V n:

P(V n) =
∑
ωn

n∏
t=1

P(v(t)|ω(t))P(ω(t)|ω(t − 1))

Formally complex but straightforward

Naive computational complexity

O(cnn)
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Introduction Bayesian Networks Näıve Bayes Bayesian Curve fitting Markov Conditional random fields

Hidden Markov Models – Evaluation problem

Probability that model produces a sequence V n:

P(V n) =
∑
ωn

n∏
t=1

P(v(t)|ω(t))P(ω(t)|ω(t − 1))

Computationally less complex algorithm:

Calculate P(V n) recursively

P(v(t)|ω(t))P(ω(t)|ω(t − 1)) involves only v(t), ω(t) and
ω(t − 1)

αj (t) =


0 t = 0 and j 6= initial state
1 t = 0 and j = initial state
[
∑

i αi (t − 1)pij ] bjk otherwise (bjk leads to observed v(t))
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Hidden Markov Models – Evaluation problem

Forward Algorithm

Computational complexity: O(c2n)

Forward algorithm

1 initialise t ← 0, pij , bjk ,V
n, αj (0)

2 for t ← t + 1
3 j ← 0
4 for j ← j + 1
5 αj (t)← bjk

∑c
i=1 αi (t − 1)pij

6 until j = c
7 until t = n
8 return P(V n)← αj (n) for the final state

9 end
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Introduction Bayesian Networks Näıve Bayes Bayesian Curve fitting Markov Conditional random fields

Hidden Markov Models – Decoding problem

Given a sequence V n, find most probable sequence of hidden states

Enumeration of every possible path will cost O(cn)

Not feasible
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Hidden Markov Models – Decoding problem

Given a sequence V n, find most probable sequence of hidden states

Decoding algorithm

1 initialise: path ← {}, t ← 0
2 for t ← t + 1
3 j ← 0;
4 for j ← j + 1
5 αj (t)← bjk

∑c
i=1 αi (t − 1)pij

6 until j = c
7 j ′ ← arg maxj αj (t)
8 append ωj ′ to path

9 until t = n
10 return path

11 end
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Hidden Markov Models – Decoding problem

Computational time of the decoding algorithm

O(c2n)
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Hidden Markov Models – Learning problem

Determine the model parameters pij and bjk

Given: Training sample of observed values V n

No method known to obtain the optimal or most likely set of
parameters from the data

However, we can nearly always determine a good solution by
the forward-backward algorithm

General expectation maximisation algorithm

Iteratively update weights in order to better explain the
observed training sequences
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Hidden Markov Models – Learning problem

Probability that the model is in state ωi (t) and will generate the
remainder of the given target sequence:

βi (t) =


0 t = n and ωi (t) not final hidden state
1 t = n and ωi (t) final hidden state∑

j βj (t + 1)pijbjk otherwise (bjk leads to v(t + 1))
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Hidden Markov Models – Learning problem

αi (t) and βi (t) only estimates of their true values since transition
probabilities pij , bjk unknown

Probability of transition between ωi (t − 1) and ωj (t) can be
estimated

Provided that the model generated the entire training
sequence V n by any path

γij (t) =
α(t − 1)pijbjkβj (t)

P(V n|Ω)

Probability that model generated sequence V n:

P(V n|Ω)
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Hidden Markov Models – Learning problem

Calculate improved estimate for pij and bjk

pij =

∑n
t=1 γij (t)∑n

t=1

∑
k γik(t)

bjk =

∑n
t=1,v(t)=vk

∑
l γjl (t)∑n

t=1

∑
l γjl (t)

Start with rough estimates of pij and bjk

Calculate improved estimates

Repeat until some convergence is reached
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Hidden Markov Models – Learning problem

Forward-Backward algorithm

1 initialise pij , bjk ,V
n, convergence criterion ∆, t ← 0

2 do t ← t + 1
3 compute pij (t)

4 compute bjk(t)

5 pij (t)← pij (t)

6 bjk (t)← bjk (t)
7 until maxi ,j ,k [pij (z)− pij (z − 1), bjk (t)− bjk(t − 1)] < ∆

(convergence achieved)

8 return pij ← pij (t), bjk ← bjk (t)
9 end
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Probabilistic graphical models
Conditional independence between nodes of the graph

Consider variables a, b and c and assume the conditional
distribution

P[a|b, c] = P[a|c]

Then: a is conditionally independent of b given c

Notation: a ⊥⊥ b | c

Importance of conditional independence in probabilistic models

Conditional independence in probabilistic models for pattern
recognition

simplifies the structure of a model and

the computations needed to perform inference and learning
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Probabilistic graphical models
Conditional independence between nodes of the graph

Conditional independence can be read directly from the graph !
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Probabilistic graphical models
Conditional independence between nodes of the graph

Conditional independence can be read directly from the graph !

Example

Assume a random experiment containing a biased
and a fair coin.

Biased: P[head] = 0.8, P[tail] = 0.2

Fair: P[head] = P[tail] = 0.5

The experiment consists of two steps:

1 Choose which coin to toss

2 Toss the coin twice
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Probabilistic graphical models
Conditional independence between nodes of the graph

Conditional independence can be read directly from the graph !

Example

If we are ignorant of which coin we chose,
the result of the first toss impacts our
expectation of what we see in the second
toss:

→ e.g. if the first toss came out head, this will
increase our expectation to see head also in
the second toss
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Probabilistic graphical models
Conditional independence between nodes of the graph

Conditional independence can be read directly from the graph !

Example

However, if we were given information about
which coin we chose, the x1 and x2

independent.

→ Since we know the distribution expected by
both coins, knowledge of the outcome of x1

does not change the expected outcome of x2
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Probabilistic graphical models
Conditional independence between nodes of the graph

P[a, b, c] = P[a|c]P[b|c]P[c]

If none of the variables are observed, we can
investigate whether a and b are independent by
marginalizing both sides with respect to c :

P[a, b] =
∑

c

P[a|c]P[b|c]P[c]

Since this does not factorize into P[a]P[b] in
general, we conclude

a 6⊥⊥ b | ∅
74 / 88

22.06.2015 Stephan Sigg Machine Learning and Pervasive Computing
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Probabilistic graphical models
Conditional independence between nodes of the graph

If, however, c is observed, we obtain

P[a, b|c] =
P[a, b, c]

P[c]

=
P[a|c]P[b|c]P[c]

P[c]

= P[a|c]P[b|c]

And thus obtain the conditional independence
property

a ⊥⊥ b | c
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Introduction Bayesian Networks Näıve Bayes Bayesian Curve fitting Markov Conditional random fields

Probabilistic graphical models
Conditional independence between nodes of the graph

P[a, b, c] = P[a]P[c |a]P[b|c]

Marginalizing over c leads to

P[a, b] = P[a]
∑

c

P[c |a]P[b|c]

= P[a]P[b|a]

This does not factorize into P[a]P[b] in general
and therefore

a 6⊥⊥ b | ∅
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Probabilistic graphical models
Conditional independence between nodes of the graph

P[a, b, c] = P[a]P[b]P[c|a, b]

Marginalizing over c leads to

P[a, b] = P[a]P[b]

So, in this case, we obtain

a ⊥⊥ b | ∅
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Probabilistic graphical models
Conditional independence between nodes of the graph

P[a, b|c] =
P[a, b, c]

P[c]

=
P[a]P[b]P[c|a, b]

P[c]

Which does not in general factorize into
P[a|c]P[b|c] and so

a 6⊥⊥ b | c

This rule applies also if, instead of c, any its descendants are
observed !
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Probabilistic graphical models
Conditional independence between nodes of the graph

D-separation

Consider a general directed graph in which A,B and C are
arbitrary nonintersecting sets of nodes

A is d-separated from B by C when all possible paths from A
to B contain a node such that either

a) the node is in the set C and the arrows meet head-to-tail or
tail-to-tail

b) the node is not in the set C nor any of its descendants and the
arrows meet head-to-head
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Probabilistic graphical models

The concept of d-separation helps us to understand the probability
distributions that are expressed by a particular graphical model:

We have seen above that the joint distribution of a graph is
given as its factorization:

P[x ] =
n∏

i=1

P[xi |parents of vertex xi ]

The graph literally filters those distributions which can express
it in terms of the factorization implied by the graph.
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Probabilistic graphical models

The concept of d-separation helps us to understand the probability
distributions that are expressed by a particular graphical model:

We have seen above that the joint distribution of a graph is
given as its factorization:

P[x ] =
n∏

i=1

P[xi |parents of vertex xi ]

The graph literally filters those distributions which can express
it in terms of the factorization implied by the graph.

It can be shown that the set of distributions that pass the filter is
precisely the set of distributions that fulfills the set of conditional
independence properties defined by the d-separation property. 81 / 88
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Probabilistic graphical models
Undirected graphical models

Undirected graphical models

Also graphical models that are described by undirected graphs
specify

a) a factorization

b) a set of conditional independence relations
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Probabilistic graphical models
Undirected graphical models

Assume three test of nodes A, B and C in such an undirected
graph

Conditional independence in undirected graphs

A ⊥⊥ B | C if all paths between A and B contain an observed
node from the set C

A 6⊥⊥ B | C if at least one path between A and B does not
contain any observed node.
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Probabilistic graphical models

Factorization rule for undirected graphs

Two nodes a and b in a graph are conditionally independent (given
all other nodes) if they are not connected by an edge

→ Since there is no direct path between the nodes

Therefore, the joint distribution described by the graph is given by
functions of the variables of the maximal cliques in the graph
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Probabilistic graphical models

The joint distribution is written as a product of potential functions
φC (XC ) over the maximal cliques XC of the graph:

P[X ] =
1

Z

∏
C

φC (XC )

Here, Z is a normalisation constant given by

Z =
∑

X

∏
C

φC (XC )

to ensure that the distribution P[X ] is correctly normalised. 85 / 88
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Probabilistic graphical models
Conditional random fields

Distinguishing between observed variables X and target variables
Y , in the unnormalized measure

P[X ,Y ] =
∏
C

φC (XC )

we can define a conditional random field as

P[Y |X ] =
1

Z (X )

∏
C

φC (XC )

Z (X ) =
∑

X

P[X ,Y ]

Compared to the Bayesian models represented in directed graphs,
the CRF removes from the model any dependency between the
input variables xi
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Questions?

Stephan Sigg
stephan.sigg@cs.uni-goettingen.de
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