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Issues related to high dimensional input data

Exponential growth When dividing the space into bins with fixed
side-length, the number of bins grows exponentially
with dimension

Counter-intuitive properties Higher dimensional spaces can have
counter-intuitive properties (see example on next
slides)

To capture a distribution underlying some process, sufficient number
of samples for all relevant regions in the feature space are required
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The curse of dimensionality

Example – Volume of a sphere

Consider a sphere of radius r = 1 in a D-dimensional space

What is the fraction of the volume of the sphere that lies
between radius r = 1 and r ′ = 1− ε?

We can estimate the volume of a shpere with radius r as

VD(r) = δDr
D

for appropriate δ
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The curse of dimensionality

Example – Volume of a sphere

We can estimate the volume of a shpere with radius r as

VD(r) = δDr
D

for appropriate δ

The required fraction is given by

VD(1)− VD(1− ε)

VD(1)
= 1− (1− ε)D
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The curse of dimensionality

Example – Volume of a sphere

The required fraction is given by

VD(1)− VD(1− ε)

VD(1)
= 1− (1− ε)D

For large D, this fraction tends to 1

In high dimensional spaces, most of the volume of a sphere is
concentrated near the surface
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The curse of dimensionality

Example – Gaussian distribution

The probability mass of the gaussian distribution is
concentrated in a thin shell (here plotted as distance from the
origin in a polar coordinate system)
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The curse of dimensionality

Discussion

While the curse of dimensionality
induces problems, we will investigate
effective techniques applicable to
high-dimensional spaces
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High dimensional data
Dimensionality reduction

High dimensional data (data with numerous features) not
appreciated in general

→ slows down classification algorithms
→ easier to visualise
→ Remove redundant features (e.g. distance travelled ↔ steps)

Machine Learning and Pervasive Computing



The curse of dimensionality Dimonsionality reduction Latent Semantic Indexing Support Vector Machines

High dimensional data
Dimensionality reduction

Principal Component Analysis

Find lower dimensional surface onto which to project the data
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High dimensional data
Dimensionality reduction

PCA finds k vectors v (1), . . . , v (k) onto which to project the data
such that the projection error is reduced.

→ In particular, we find values z(i) to represent the x (i) in this
k-dimensional vector space spanned by the v (i)
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High dimensional data
Dimensionality reduction

1 Compute the covariance matrix from the x (i):

Σ =
1

m

n∑
i=1

(
x (i)
)

︸ ︷︷ ︸
1×m-dim.

(
x (i)
)T

︸ ︷︷ ︸
m×1-dim.︸ ︷︷ ︸

m×m-dim.

2 The pricipal components are found by computing the
eigenvectors and eigenvalues of Σ (solving equation (Σ− λIm)u = 0)

When a matrix Σ is multiplied with a vector u′, this usually
results in a new vector Σu′ of different direction than u′.

→ There are few vectors u, however, which have the same
direction (Σu = λu).

These are the eigenvectors of Σ and λ are the eigenvalues
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High dimensional data

How to choose the number k of dimensions?

We can calculate

Average squared projection error

Total variation in the data
→
∑m

i=1 ||x (i) − x (i)
approx||2

1
m

∑m
i=1 ||x (i)||2

as the accuracy of the projection using k principle components
as a function of the eigenvalues∑k

i=1

√
ui∑m

j=1
√
uj

= d

We say that 100 · (1− d)% of variance is retained.
(Typically, d ∈ [0.01, 0.05] )
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Latent Semantic Indexing
Motivation

In information retrieval, a common task is to obtain from a
large body of documents that subset which best matches a
pre-given query

→ Typical feature rpresentations of documents are then
term-document matrices:

→ These matrices are typically huge but sparse.

How to identify those feature dimensions (or combinations thereof)
which are most meaningful in such sparse matrices?
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Latent Semantic Indexing
Singular Value Decomposition

Any m × n matrix C can be represented as a singular value
decomposition in the form C = UΣV T where

U m×m matrix with orthogonal eigenvectors of CCT as columns
V n × n matrix with orthogonal eigenvectors of CTC as columns
Σ Diagonal Matrix with Σii =

√
λi ; Σij = 0, i 6= j

→ CCT = UΣV T VΣUT = UΣ2UT

CCT is a square symmetric real-valued matrix
Entry (i , j) is a measure of the overlap between the ith and jth
terms.
For term-document incident matrices, it is the number of
documents with co-occuring terms i and j.

→ Choosing just the first k eigenvectors, the document vectors
will be mapped to a lower dimensional representation
It can be shown that this mapping will result in the
k-dimensional space with smallest distance to the original
space
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Latent Semantic Indexing
Example

U:
Σ:

V T :
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Latent Semantic Indexing
Example

Σ:

C2:

Find similar

queries via the Cosine-similarity
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Support vector machines (SVM)

For our previous classifier, we have designed an
objective function of sufficient dimension

Alternative to designing complex non-linear functions:

Change dimension of input space so that linear
separator is again possible
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Support vector machines (SVM)

SVM pre-processes data to represent patterns in a high dimension

Dimension often much higher than original feature space

Then, insert hyperplane in order to separate the data
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Support vector machines (SVM)

The goal for support vector machines is to find a separating
hyperplane with the largest margin to the outer points in all sets

If no such hyperplane exists, map all points into a higher
dimensional space until such a plane exists
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Support vector machines (SVM)

Simple application to several classes by iterative approach:

belongs to class 1 or not?

belongs to class 2 or not?

...

Search for optimum mapping between input space and feature
space complicated (no optimum approach known)
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Support vector machines (SVM)
Cost function

Contribution of a single sample to the overall cost:

SVM

−y · costy=1(W T x) +−(1− y) · costy=0(W T x)
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Cost function
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Logistic regression

−y · log
1

1 + e−WT x
− (1− y) · log

(
1− 1

1 + e−WT x

)

SVM

−y · costy=1(W T x) +−(1− y) · costy=0(W T x)
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Support vector machines (SVM)
Cost function

Logistic regression

min
W

1
m

[∑m
i=1 yi

(
− log 1

1+e−WT xi

)
+ (1 − yi )

(
− log

(
1 − 1

1+e−WT xi

))]
+ λ

2m

∑n
j=1 w

2
j

SVM

min
W

C
∑m

i=1

[
yicosty=1(W T xi ) + (1 − yi )costy=0(W T xi )

]
+ 1

2

∑n
j=1 w

2
j

. 1

1C here plays a similar role as 1
λ
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Support vector machines (SVM)
Large margin classifier

min
W

C
m∑
i=1

[
yicosty=1(W T xi ) + (1− yi )costy=0(W T xi )

]
+

1

2

n∑
j=1

w2
j

Rewrite the SVM optimisation problem as

min
W

1
2

∑n
j=1 w

2
j

s.t. W T xi ≥ 1 if yi = 1

W T xi ≤ −1 if yi = 0
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Support vector machines (SVM)
Kernels – Non linear decision boundary

σ controls the width of the Gaussian

Example: w0 = −0.5,w1 = 1,w2 = 1,w3 = 0

h(x) = w0 + w1k(x , l1) + w2k(x , l2) + w3k(x , l3)
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Support vector machines (SVM)
Kernels – placement of landmarks

Possible choice of initial landmarks: All training-set samples

Training of wi

fi =

 k(xi , l1)
...

k(xi , lm)



min
W

C
m∑
i=1

yicostyi=1(W T fi ) + (1− yi ) · costyi=0(W T fi ) +
1

2

m∑
j=1

w2
j
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Questions?

Stephan Sigg
stephan.sigg@cs.uni-goettingen.de
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