Machine Learning and Pervasive Computing

Stephan Sigg
Georg－August－University Goettingen，Computer Networks

01．06．2015

Overview and Structure

13.04.2015 Organisation
13.04.2015 Introduction
20.04.2015 Rule-based learning
27.04.2015 Decision Trees
04.05.2015 A simple Supervised learning algorithm
11.05.2015 -
18.05.2015 Excursion: Avoiding local optima with random search 25.05.2015 -
01.06.2015 High dimensional data
08.06.2015 Artificial Neural Networks
15.06.2015 k-Nearest Neighbour methods
22.06.2015 Probabilistic models
29.06.2015 Topic models
06.07.2015 Unsupervised learning
13.07.2015 Anomaly detection, Online learning, Recom. systems

Outline

The curse of dimensionality

Dimonsionality reduction

Latent Semantic Indexing

Support Vector Machines
Cost function
Hypothesis
Kernels

Issues related to high dimensional input data

Exponential growth When dividing the space into bins with fixed side-length, the number of bins grows exponentially with dimension

Machine Learning and Pervasive Computing

Issues related to high dimensional input data

Exponential growth When dividing the space into bins with fixed side-length, the number of bins grows exponentially with dimension

To capture a distribution underlying some process, sufficient number of samples for all relevant regions in the feature space are required

Issues related to high dimensional input data

Exponential growth When dividing the space into bins with fixed side-length, the number of bins grows exponentially with dimension
Counter-intuitive properties Higher dimensional spaces can have counter-intuitive properties (see example on next slides)

The curse of dimensionality

Example - Volume of a sphere

Consider a sphere of radius $r=1$ in a D-dimensional space

The curse of dimensionality

Example - Volume of a sphere

Consider a sphere of radius $r=1$ in a D-dimensional space What is the fraction of the volume of the sphere that lies between radius $r=1$ and $r^{\prime}=1-\varepsilon$?

The curse of dimensionality

Example - Volume of a sphere

Consider a sphere of radius $r=1$ in a D-dimensional space What is the fraction of the volume of the sphere that lies between radius $r=1$ and $r^{\prime}=1-\varepsilon$?

We can estimate the volume of a shpere with radius r as

$$
V_{D}(r)=\delta_{D} r^{D}
$$

for appropriate δ

The curse of dimensionality

Example - Volume of a sphere

We can estimate the volume of a shpere with radius r as

$$
V_{D}(r)=\delta_{D} r^{D}
$$

for appropriate δ

The curse of dimensionality

Example - Volume of a sphere

We can estimate the volume of a shpere with radius r as

$$
V_{D}(r)=\delta_{D} r^{D}
$$

for appropriate δ
The required fraction is given by

$$
\frac{V_{D}(1)-V_{D}(1-\varepsilon)}{V_{D}(1)}=1-(1-\varepsilon)^{D}
$$

The curse of dimensionality

Example - Volume of a sphere

The required fraction is given by

$$
\frac{V_{D}(1)-V_{D}(1-\varepsilon)}{V_{D}(1)}=1-(1-\varepsilon)^{D}
$$

The curse of dimensionality

Example - Volume of a sphere

The required fraction is given by

$$
\frac{V_{D}(1)-V_{D}(1-\varepsilon)}{V_{D}(1)}=1-(1-\varepsilon)^{D}
$$

For large D, this fraction tends to 1
In high dimensional spaces, most of the volume of a sphere is concentrated near the surface

The curse of dimensionality

The curse of dimensionality

Example - Gaussian distribution

The probability mass of the gaussian distribution is concentrated in a thin shell (here plotted as distance from the origin in a polar coordinate system)

The curse of dimensionality

Discussion

While the curse of dimensionality induces problems, we will investigate effective techniques applicable to high-dimensional spaces

Outline

The curse of dimensionality

Dimonsionality reduction

Latent Semantic Indexing

Support Vector Machines
Cost function
Hypothesis
Kernels

High dimensional data

Dimensionality reduction

High dimensional data (data with numerous features) not appreciated in general
\rightarrow slows down classification algorithms
\rightarrow easier to visualise
\rightarrow Remove redundant features (e.g. distance travelled \leftrightarrow steps)

High dimensional data

Dimensionality reduction

Principal Component Analysis

Find lower dimensional surface onto which to project the data

High dimensional data

Dimensionality reduction

Principal Component Analysis

Find lower dimensional surface onto which to project the data

High dimensional data

Dimensionality reduction

Principal Component Analysis

Find lower dimensional surface onto which to project the data

High dimensional data

Dimensionality reduction

Principal Component Analysis

Find lower dimensional surface onto which to project the data

High dimensional data

Dimensionality reduction

PCA finds k vectors $v^{(1)}, \ldots, v^{(k)}$ onto which to project the data such that the projection error is reduced.

High dimensional data

Dimensionality reduction

PCA finds k vectors $v^{(1)}, \ldots, v^{(k)}$ onto which to project the data such that the projection error is reduced.
\rightarrow In particular, we find values $z^{(i)}$ to represent the $x^{(i)}$ in this k -dimensional vector space spanned by the $v^{(i)}$

High dimensional data

Dimensionality reduction
(1) Compute the covariance matrix from the $x^{(i)}$:

$$
\Sigma=\frac{1}{m} \sum_{i=1}^{n} \underbrace{\underbrace{T \times \operatorname{dim} \cdot m \times 1-\operatorname{dim}}}_{\underbrace{\left(x^{(i)}\right)}_{m \times m-\operatorname{dim} .} \underbrace{\left(x^{(i)}\right)^{T}}}
$$

High dimensional data

Dimensionality reduction
(1) Compute the covariance matrix from the $x^{(i)}$:

$$
\Sigma=\frac{1}{m} \sum_{i=1}^{n} \underbrace{\left(x^{(i)}\right)}_{m \times m-\operatorname{dim} .} \underbrace{\left(x^{(i)}\right)^{T}}_{1 \times m-\operatorname{dim} \cdot m \times 1-\operatorname{dim}}
$$

Covariance

A measure of spread of a set of points around their center of mass

High dimensional data

Dimensionality reduction
(1) Compute the covariance matrix from the $x^{(i)}$:

$$
\Sigma=\frac{1}{m} \sum_{i=1}^{n} \underbrace{\underbrace{T}}_{\underbrace{}_{m \times m-\operatorname{dim}} \underbrace{\left(x^{(i)}\right)} \underbrace{\left(x^{(i)}\right)^{T}}}
$$

(2) The pricipal components are found by computing the eigenvectors and eigenvalues of Σ (solving equation $(\Sigma-\lambda / m) u=0$)

High dimensional data

Dimensionality reduction

When a matrix Σ is multiplied with a vector u^{\prime}, this usually results in a new vector Σu^{\prime} of different direction than u^{\prime}.
(2) The pricipal components are found by computing the eigenvectors and eigenvalues of Σ (solving equation $(\Sigma-\lambda / m) u=0$)

High dimensional data

Dimensionality reduction

When a matrix Σ is multiplied with a vector u^{\prime}, this usually results in a new vector Σu^{\prime} of different direction than u^{\prime}.
\rightarrow There are few vectors u, however, which have the same direction $(\Sigma u=\lambda u)$.
These are the eigenvectors of Σ and λ are the eigenvalues
(2) The pricipal components are found by computing the eigenvectors and eigenvalues of Σ (solving equation $(\Sigma-\lambda / m) u=0$)

High dimensional data

Dimensionality reduction

(1) Compute the covariance matrix from the $x^{(i)}$:

$$
\Sigma=\frac{1}{m} \sum_{i=1}^{n} \underbrace{\underbrace{T \times \operatorname{dim} \cdot m \times 1-\operatorname{dim}}}_{\underbrace{\left(x^{(i)}\right)}_{m \times m-\operatorname{dim} .} \underbrace{\left(x^{(i)}\right)^{T}}}
$$

(2) The pricipal components are found by computing the eigenvectors and eigenvalues of Σ (solving equation $\left(\Sigma-\lambda l_{m}\right) u=0$)

Eigenvectors and Eigenvalues

The (orthogonal) eigenvectors are sorted by their eigenvalues with respect to the direction of greatest variance in the data.

High dimensional data

Dimensionality reduction
(1) Compute the covariance matrix from the $x^{(i)}$:

$$
\Sigma=\frac{1}{m} \sum_{i=1}^{n} \underbrace{\left(x^{(i)}\right)}_{m \times m-\operatorname{dim} .} \underbrace{\left(x^{(i)}\right)^{T}}_{1 \times m-\operatorname{dim} \cdot m \times 1-\operatorname{dim}}
$$

(2) The pricipal components are found by computing the eigenvectors and eigenvalues of Σ (solving equation $(\Sigma-\lambda / m) u=0$)
(3) Choose the k eigenvectors with largest eigenvalues to represent the projection space U

High dimensional data

Dimensionality reduction

(1) Compute the covariance matrix from the $x^{(i)}$:

$$
\Sigma=\frac{1}{m} \sum_{i=1}^{n} \underbrace{\left(x^{(i)}\right)^{T}}_{\underbrace{\left(x^{(i)}\right)}_{m \times m-\operatorname{dim} .} \underbrace{(\times m-\operatorname{dim} \cdot m \times 1-\operatorname{dim}}}
$$

(2) The pricipal components are found by computing the eigenvectors and eigenvalues of Σ (solving equation $\left(\Sigma-\lambda I_{m}\right) u=0$)
(3) Choose the k eigenvectors with largest eigenvalues to represent the projection space U
(9) These k eigenvectors in U are used to transform the inputs x_{i} to z_{i} :

$$
z^{(i)}=U^{T} x^{(i)}
$$

High dimensional data

How to choose the number k of dimensions?

We can calculate
$\frac{\text { Average squared projection error }}{\text { Total variation in the data }} \rightarrow \frac{\sum_{i=1}^{m}\left\|x^{(i)}-x_{\text {approx }}^{(i)}\right\|^{2}}{\frac{1}{m} \sum_{i=1}^{m}\left\|x^{(i)}\right\|^{2}}$
as the accuracy of the projection using k principle components as a function of the eigenvalues

$$
\frac{\sum_{i=1}^{k} \sqrt{u_{i}}}{\sum_{j=1}^{m} \sqrt{u_{j}}}=d
$$

High dimensional data

How to choose the number k of dimensions?

We can calculate
$\frac{\text { Average squared projection error }}{\text { Total variation in the data }} \rightarrow \frac{\sum_{i=1}^{m}\left\|x^{(i)}-x_{\text {approx }}^{(i)}\right\|^{2}}{\frac{1}{m} \sum_{i=1}^{m}\left\|x^{(i)}\right\|^{2}}$
as the accuracy of the projection using k principle components as a function of the eigenvalues

$$
\frac{\sum_{i=1}^{k} \sqrt{u_{i}}}{\sum_{j=1}^{m} \sqrt{u_{j}}}=d
$$

We say that $100 \cdot(1-d) \%$ of variance is retained. (Typically, $d \in[0.01,0.05]$)

High dimensional data

How to choose the number k of dimensions?
We can calcı
Average squ:
Total vari
as the accure as a function

$$
\begin{aligned}
& \frac{1}{=1}\left\|x^{(i)}-x_{\text {approx }}^{(i)}\right\|^{2} \\
& \frac{1}{n} \sum_{i=1}^{m}\left\|x^{(i)}\right\|^{2} \\
& \text { principle components }
\end{aligned}
$$

Outline

The curse of dimensionality

Dimonsionality reduction

Latent Semantic Indexing

Support Vector Machines
Cost function
Hypothesis
Kernels

Latent Semantic Indexing

Motivation

In information retrieval, a common task is to obtain from a large body of documents that subset which best matches a pre-given query

Latent Semantic Indexing

Motivation

In information retrieval, a common task is to obtain from a large body of documents that subset which best matches a pre-given query
\rightarrow Typical feature rpresentations of documents are then term-document matrices:

Latent Semantic Indexing

Motivation

Terms	Documents													
	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10	MII	M12	M13	M14
abnormalities	0	0	0	0	0	0	0	1	0	1	0	0	0	0
age	1	0	0	0	0	0	0	0	0	0	0	1	0	0
behavior	0	0	0	0	1	1	0	0	0	0	0	0	0	0
blood	0	0	0	0	0	0	0	1	0	0	1	0	0	0
close	0	0	0	0	0	0	1	0	0	0	1	0	0	0
culture	1	1	0	0	0	0	0	1	1	0	0	0	0	0
depressed	1	0	1	1	1	0	0	0	0	0	0	0	0	0
discharge	1	1	0	0	0	1	0	0	0	0	0	0	0	0
disease	0	0	0	0	0	0	0	0	1	0	1	0	0	0
fast	0	0	0	0	0	0	0	0	0	1	0	1	1	1
generation	0	0	0	0	0	0	0	0	1	0	0	0	1	0
oestrogen	0	0	1	1	0	0	0	0	0	0	0	0	0	0
patients	1	1	0	1	0	0	0	1	0	0	0	0	0	0
pressure	0	0	0	0	0	0	0	0	0	0	1	0	0	1
rats	0	0	0	0	0	0	0	0	0	0	0	0	1	1
respect	0	0	0	0	0	0	0	1	0	0	0	1	0	0
rise	0	0	0	1	0	0	0	0	0	0	0	0	0	1
study	1	0	1	0	0	0	0	0	1	0	0	0	0	0

Latent Semantic Indexing

Motivation

In information retrieval, a common task is to obtain from a large body of documents that subset which best matches a pre-given query
\rightarrow Typical feature rpresentations of documents are then term-document matrices:
\rightarrow These matrices are typically huge but sparse.

Latent Semantic Indexing

Motivation

In information retrieval, a common task is to obtain from a large body of documents that subset which best matches a pre-given query
\rightarrow Typical feature rpresentations of documents are then term-document matrices:
\rightarrow These matrices are typically huge but sparse.

How to identify those feature dimensions (or combinations thereof) which are most meaningful in such sparse matrices?

Latent Semantic Indexing

Singular Value Decomposition
Any $m \times n$ matrix C can be represented as a singular value decomposition in the form $C=U \Sigma V^{T}$ where

U $m \times m$ matrix with orthogonal eigenvectors of $C C^{\top}$ as columns
V $n \times n$ matrix with orthogonal eigenvectors of $C^{T} C$ as columns
Σ Diagonal Matrix with $\Sigma_{i i}=\sqrt{\lambda_{i}} ; \Sigma_{i j}=0, i \neq j$

Latent Semantic Indexing

Singular Value Decomposition

Any $m \times n$ matrix C can be represented as a singular value decomposition in the form $C=U \Sigma V^{T}$ where

U $m \times m$ matrix with orthogonal eigenvectors of $C C^{T}$ as columns
V $n \times n$ matrix with orthogonal eigenvectors of $C^{T} C$ as columns
Σ Diagonal Matrix with $\Sigma_{i i}=\sqrt{\lambda_{i}} ; \Sigma_{i j}=0, i \neq j$
$\rightarrow C C^{T}=U \Sigma V^{T} V \Sigma U^{T}=U \Sigma^{2} U^{T}$

- $C C^{T}$ is a square symmetric real-valued matrix
- Entry (i, j) is a measure of the overlap between the ith and jth terms.
- For term-document incident matrices, it is the number of documents with co-occuring terms i and j .

Latent Semantic Indexing

Singular Value Decomposition

Any $m \times n$ matrix C can be represented as a singular value decomposition in the form $C=U \Sigma V^{T}$ where

U $m \times m$ matrix with orthogonal eigenvectors of $C C^{T}$ as columns
V $n \times n$ matrix with orthogonal eigenvectors of $C^{T} C$ as columns
Σ Diagonal Matrix with $\Sigma_{i i}=\sqrt{\lambda_{i}} ; \Sigma_{i j}=0, i \neq j$
$\rightarrow C C^{T}=U \Sigma V^{T} V \Sigma U^{T}=U \Sigma^{2} U^{T}$

- $C C^{T}$ is a square symmetric real-valued matrix
- Entry (i, j) is a measure of the overlap between the ith and jth terms.
- For term-document incident matrices, it is the number of documents with co-occuring terms i and j .
\rightarrow Choosing just the first k eigenvectors, the document vectors will be mapped to a lower dimensional representation It can be shown that this mapping will result in the k-dimensional space with smallest distance to the original space

Latent Semantic Indexing

Example

	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}	d_{6}
ship	1	0	1	0	0	0
boat	0	1	0	0	0	0
ocean	1	1	0	0	0	0
voyage	1	0	0	1	1	0
trip	0	0	0	1	0	1

$$
\begin{gathered}
\mathrm{U}: \\
\Sigma_{\mathrm{V}} \mathrm{i} \\
V^{T}
\end{gathered}
$$

Latent Semantic Indexing

Example

$$
\begin{array}{cl|rrrrrr}
& & 1 & 2 & 3 & 4 & 5 \\
& & \text { ship } & -0.44 & -0.30 & 0.57 & 0.58 & 0.25 \\
& \text { boat } & -0.13 & -0.33 & -0.59 & 0.00 & 0.73 \\
& \text { ocean } & -0.48 & -0.51 & -0.37 & 0.00 & -0.61 \\
& \text { voyage } & -0.70 & 0.35 & 0.15 & -0.58 & 0.16 \\
& \text { trip } & -0.26 & 0.65 & -0.41 & 0.58 & -0.09 \\
& 2.16 & 0.00 & 0.00 & 0.00 & 0.00 & & \\
& 0.00 & 1.59 & 0.00 & 0.00 & 0.00 & & \\
\\
& 0.00 & 0.00 & 1.28 & 0.00 & 0.00 & & \\
\\
\Sigma & 0.00 & 0.00 & 0.00 & 1.00 & 0.00 & & \\
& 0.00 & 0.00 & 0.00 & 0.00 & 0.39 & & \\
& & d_{1} & d_{2} & d_{3} & d_{4} & d_{5} & d_{6} \\
& 1 & -0.75 & -0.28 & -0.20 & -0.45 & -0.33 & -0.12 \\
& 2 & -0.29 & -0.53 & -0.19 & 0.63 & 0.22 & 0.41 \\
& 3 & 0.28 & -0.75 & 0.45 & -0.20 & 0.12 & -0.33 \\
& 4 & 0.00 & 0.00 & 0.58 & 0.00 & -0.58 & 0.58 \\
V^{T}: & 5 & -0.53 & 0.29 & 0.63 & 0.19 & 0.41 & -0.22
\end{array}
$$

Latent Semantic Indexing

Example

$$
\begin{aligned}
& \text { queries via the Cosine-similarity }
\end{aligned}
$$

Outline

The curse of dimensionality

Dimonsionality reduction

Latent Semantic Indexing

Support Vector Machines
Cost function
Hypothesis
Kernels

Support vector machines (SVM)

For our previous classifier, we have designed an objective function of sufficient dimension

Support vector machines (SVM)

For our previous classifier, we have designed an objective function of sufficient dimension
Alternative to designing complex non-linear functions:
Change dimension of input space so that linear separator is again possible

Support vector machines (SVM)

Machine Learning and Pervasive Computing

Support vector machines (SVM)

SVM pre-processes data to represent patterns in a high dimension Dimension often much higher than original feature space

Then, insert hyperplane in order to separate the data

Support vector machines (SVM)

The goal for support vector machines is to find a separating hyperplane with the largest margin to the outer points in all sets

If no such hyperplane exists, map all points into a higher dimensional space until such a plane exists

Support vector machines (SVM)

Simple application to several classes by iterative approach: belongs to class 1 or not? belongs to class 2 or not?

Search for optimum mapping between input space and feature space complicated (no optimum approach known)

Outline

The curse of dimensionality

Dimonsionality reduction

Latent Semantic Indexing

Support Vector Machines
Cost function
Hypothesis
Kernels

Support vector machines (SVM)

Cost function

Contribution of a single sample to the overall cost:

Support vector machines (SVM)

Cost function

Contribution of a single sample to the overall cost:
Logistic regression

$$
-y \cdot \log \frac{1}{1+e^{-W^{\top} x}}-(1-y) \cdot \log \left(1-\frac{1}{1+e^{-W^{\top} x}}\right)
$$

Support vector machines (SVM)

Cost function

Contribution of a single sample to the overall cost:
Logistic regression

$$
-y \cdot \log \frac{1}{1+e^{-W^{T} x}}-(1-y) \cdot \log \left(1-\frac{1}{1+e^{-W^{T} x}}\right)
$$

SVM

$$
-y \cdot \operatorname{cost}_{y=1}\left(W^{\top} x\right)+-(1-y) \cdot \operatorname{cost}_{y=0}\left(W^{\top} x\right)
$$

Support vector machines (SVM)

Cost function

Logistic regression
$\min _{W} \frac{1}{m}\left[\sum_{i=1}^{m} y_{i}\left(-\log \frac{1}{1+e^{-W^{T} x_{i}}}\right)+\left(1-y_{i}\right)\left(-\log \left(1-\frac{1}{1+e^{-W^{T} x_{i}}}\right)\right)\right]+\frac{\lambda}{2 m} \sum_{j=1}^{n} w_{j}^{2}$

$\min _{W}$	$C \sum_{i=1}^{m}\left[y_{i} \operatorname{cost}_{y=1}\left(W^{T} x_{i}\right)+\left(1-y_{i}\right) \operatorname{cost}_{y=0}\left(W^{T} x_{i}\right)\right]+\frac{1}{2} \sum_{j=1}^{n} w_{j}^{2}$
1	

${ }^{1} \mathrm{C}$ here plays a similar role as $\frac{1}{\lambda}$

Outline

The curse of dimensionality

Dimonsionality reduction

Latent Semantic Indexing

Support Vector Machines
Cost function
Hypothesis
Kernels

Support vector machines (SVM)

SVM hypothesis

$$
\min _{W} C \sum_{i=1}^{m}\left[y_{i} \operatorname{cost}_{y=1}\left(W^{\top} x_{i}\right)+\left(1-y_{i}\right) \operatorname{cost}_{y=0}\left(W^{T} x_{i}\right)\right]+\frac{1}{2} \sum_{j=1}^{n} w_{j}^{2}
$$

Support vector machines (SVM)

SVM hypothesis

$$
\min _{W} C \sum_{i=1}^{m}\left[y_{i} \operatorname{cost}_{y=1}\left(W^{T} x_{i}\right)+\left(1-y_{i}\right) \operatorname{cost}_{y=0}\left(W^{T} x_{i}\right)\right]+\frac{1}{2} \sum_{j=1}^{n} w_{j}^{2}
$$

Support vector machines (SVM)

SVM hypothesis

$$
W^{\top} x\left\{\begin{array}{l}
\geq 0 \\
<0
\end{array}\right. \text { sufficient }
$$

$$
\min _{W} C \sum_{i=1}^{m}\left[y_{i} \operatorname{cost}_{y=1}\left(W^{T} x_{i}\right)+\left(1-y_{i}\right) \operatorname{cost}_{y=0}\left(W^{T} x_{i}\right)\right]+\frac{1}{2} \sum_{j=1}^{n} w_{j}^{2}
$$

Support vector machines (SVM)

SVM hypothesis

$$
W^{T} \times\left\{\begin{array}{l}
\geq 1 \\
\leq-1
\end{array} \Rightarrow\right. \text { confidence }
$$

$$
\min _{W} C \sum_{i=1}^{m}\left[y_{i} \operatorname{cost} t_{y=1}\left(W^{\top} x_{i}\right)+\left(1-y_{i}\right) \operatorname{cost} t_{y=0}\left(W^{\top} x_{i}\right)\right]+\frac{1}{2} \sum_{j=1}^{n} w_{j}^{2}
$$

Support vector machines (SVM)

SVM hypothesis

$$
W^{T} x\left\{\begin{array}{l}
\geq 1 \\
\leq-1
\end{array} \Rightarrow\right. \text { confidence }
$$

Outliers: Elastic decision boundary

$$
\min _{W} C \sum_{i=1}^{m}\left[y_{i} \operatorname{cost}_{y=1}\left(W^{T} x_{i}\right)+\left(1-y_{i}\right) \operatorname{cost}_{y=0}\left(W^{T} x_{i}\right)\right]+\frac{1}{2} \sum_{j=1}^{n} w_{j}^{2}
$$

Support vector machines (SVM)

SVM hypothesis

$$
W^{T} x\left\{\begin{array}{l}
\geq 1 \\
\leq-1
\end{array} \Rightarrow\right. \text { confidence }
$$

Outliers: Elastic decision boundary

$$
\min _{W} C \sum_{i=1}^{m}\left[y_{i} \operatorname{cost}_{y=1}\left(W^{T} x_{i}\right)+\left(1-y_{i}\right) \operatorname{cost}_{y=0}\left(W^{T} x_{i}\right)\right]+\frac{1}{2} \sum_{j=1}^{n} w_{j}^{2}
$$

Support vector machines (SVM)

SVM hypothesis

$$
W^{T} x\left\{\begin{array}{l}
\geq 1 \\
\leq-1
\end{array} \quad \Rightarrow\right. \text { confidence }
$$

Outliers: Elastic decision boundary
large C stricter boundary at the cost of smaller margin

$$
\min _{W} C \sum_{i=1}^{m}\left[y_{i} \operatorname{cost}_{y=1}\left(W^{T} x_{i}\right)+\left(1-y_{i}\right) \operatorname{cost}_{y=0}\left(W^{T} x_{i}\right)\right]+\frac{1}{2} \sum_{j=1}^{n} w_{j}^{2}
$$

Support vector machines (SVM)

SVM hypothesis

$$
W^{T} x\left\{\begin{array}{l}
\geq 1 \\
\leq-1
\end{array} \Rightarrow\right. \text { confidence }
$$

Outliers: Elastic decision boundary

small C tolerates outliers

$$
\min _{W} C \sum_{i=1}^{m}\left[y_{i} \operatorname{cost} t_{y=1}\left(W^{\top} x_{i}\right)+\left(1-y_{i}\right) \operatorname{cost} t_{y=0}\left(W^{\top} x_{i}\right)\right]+\frac{1}{2} \sum_{j=1}^{n} w_{j}^{2}
$$

Support vector machines (SVM)

Large margin classifier

$$
\min _{W} C \sum_{i=1}^{m}\left[y_{i} \operatorname{cost}_{y=1}\left(W^{\top} x_{i}\right)+\left(1-y_{i}\right) \operatorname{cost}_{y=0}\left(W^{\top} x_{i}\right)\right]+\frac{1}{2} \sum_{j=1}^{n} w_{j}^{2}
$$

Support vector machines (SVM)

Large margin classifier

$$
\min _{W} C \sum_{i=1}^{m}\left[y_{i} \operatorname{cost}_{y=1}\left(W^{T} x_{i}\right)+\left(1-y_{i}\right) \operatorname{cost}_{y=0}\left(W^{T} x_{i}\right)\right]+\frac{1}{2} \sum_{j=1}^{n} w_{j}^{2}
$$

Rewrite the SVM optimisation problem as

$$
\begin{array}{cl}
\min _{W} & \frac{1}{2} \sum_{j=1}^{n} w_{j}^{2} \\
\text { s.t. } & W^{T} x_{i} \geq 1 \\
& W^{\top} x_{i} \leq-1
\end{array} \quad \text { if } y_{i}=1=0
$$

Support vector machines (SVM)

Large margin classifier

$$
\begin{array}{lr}
\min _{W} & \frac{1}{2} \sum_{j=1}^{n} w_{j}^{2} \\
\text { s.t. } & W^{T} x_{i} \geq 1 \text { if } y_{i}=1 \\
& W^{T} x_{i} \leq-1 \text { if } y_{i}=0
\end{array}
$$

Support vector machines (SVM)

Large margin classifier

$$
\begin{array}{cc}
\min _{W} & \frac{1}{2} \sum_{j=1}^{n} w_{j}^{2}=\frac{1}{2}\left(\sqrt{w_{1}^{2}+\cdots+w_{n}^{2}}\right)^{2} \\
\text { s.t. } & W^{T} x_{i} \geq 1 \text { if } y_{i}=1 \\
& W^{T} x_{i} \leq-1 \text { if } y_{i}=0
\end{array}
$$

Support vector machines (SVM)

Large margin classifier

$$
\begin{array}{cc}
\min _{W} & \frac{1}{2} \sum_{j=1}^{n} w_{j}^{2}=\frac{1}{2}\left(\sqrt{w_{1}^{2}+\cdots+w_{n}^{2}}\right)^{2}=\frac{1}{2}\|W\|^{2} \\
\text { s.t. } & W^{\top} x_{i} \geq 1 \text { if } y_{i}=1 \\
& W^{\top} x_{i} \leq-1 \text { if } y_{i}=0
\end{array}
$$

Support vector machines (SVM)

Large margin classifier

$$
\begin{array}{lc}
\min _{W} & \frac{1}{2} \sum_{j=1}^{n} w_{j}^{2}=\frac{1}{2}\left(\sqrt{w_{1}^{2}+\cdots+w_{n}^{2}}\right)^{2}=\frac{1}{2}\|W\|^{2} \\
\text { s.t. } & W^{\top} x_{i} \geq 1 \text { if } y_{i}=1 \\
& W^{\top} x_{i} \leq-1 \text { if } y_{i}=0
\end{array}
$$

$$
W^{\top} x=w_{1} x_{1}+w_{2} x_{2}
$$

Support vector machines (SVM)

Large margin classifier

$$
\begin{array}{lc}
\min _{w} & \frac{1}{2} \sum_{j=1}^{n} w_{j}^{2}=\frac{1}{2}\left(\sqrt{w_{1}^{2}+\cdots+w_{n}^{2}}\right)^{2}=\frac{1}{2}\|W\|^{2} \\
\text { s.t. } & W^{\top} x_{i} \geq 1 \text { if } y_{i}=1 \\
& W^{\top} x_{i} \leq-1 \text { if } y_{i}=0
\end{array}
$$

$$
W^{\top} x=w_{1} x_{1}+w_{2} x_{2}=\|W\| \cdot p
$$

Support vector machines (SVM)

Large margin classifier

$$
\begin{array}{ccl}
\min _{W} \frac{1}{2} \sum_{j=1}^{n} w_{j}^{2}=\frac{1}{2}\left(\sqrt{w_{1}^{2}+\cdots+w_{n}^{2}}\right)^{2} & =\frac{1}{2}\|W\|^{2} \\
\text { s.t. } & W^{\top} x_{i} \geq 1 \text { if } y_{i}=1 & \rightarrow\|W\| \cdot p_{i} \geq 1 \\
& W^{T} x_{i} \leq-1 \text { if } y_{i}=0 & \rightarrow\|W\| \cdot p_{i} \leq-1
\end{array}
$$

$$
W^{\top} x=w_{1} x_{1}+w_{2} x_{2}=\|W\| \cdot p
$$

Support vector machines (SVM)

Large margin classifier

$$
\begin{array}{ccl}
\min _{W} \frac{1}{2} \sum_{j=1}^{n} w_{j}^{2}=\frac{1}{2}\left(\sqrt{w_{1}^{2}+\cdots+w_{n}^{2}}\right)^{2} & =\frac{1}{2}\|W\|^{2} \\
\text { s.t. } & W^{T} x_{i} \geq 1 \text { if } y_{i}=1 & \rightarrow\|W\| \cdot p_{i} \geq 1 \\
& W^{T} x_{i} \leq-1 \text { if } y_{i}=0 & \rightarrow\|W\| \cdot p_{i} \leq-1
\end{array}
$$

Which decision boundaray is found?

Support vector machines (SVM)

Large margin classifier

$$
\begin{array}{lcl}
\min _{W} \frac{1}{2} \sum_{j=1}^{n} w_{j}^{2}=\frac{1}{2}\left(\sqrt{w_{1}^{2}+\cdots+w_{n}^{2}}\right)^{2} & =\frac{1}{2}\|W\|^{2} \\
\text { s.t. } \quad W^{\top} x_{i} \geq 1 \text { if } y_{i}=1 & \rightarrow\|W\| \cdot p_{i} \geq 1 \\
& W^{\top} x_{i} \leq-1 \text { if } y_{i}=0 & \rightarrow\|W\| \cdot p_{i} \leq-1
\end{array}
$$

Which decision boundaray is found?

Support vector machines (SVM)

Large margin classifier

$$
\begin{array}{ccl}
\min _{W} & \frac{1}{2} \sum_{j=1}^{n} w_{j}^{2}=\frac{1}{2}\left(\sqrt{w_{1}^{2}+\cdots+w_{n}^{2}}\right)^{2} & =\frac{1}{2}\|W\|^{2} \\
\text { s.t. } & W^{T} x_{i} \geq 1 \text { if } y_{i}=1 & \rightarrow\|W\| \cdot p_{i} \geq 1 \\
& W^{T} x_{i} \leq-1 \text { if } y_{i}=0 & \rightarrow\|W\| \cdot p_{i} \leq-1
\end{array}
$$

Which decision boundaray is found?

$$
h(x)=w_{1} x_{1}+w_{2} x_{2}
$$

$\rightarrow W$ orthogonal to all x with $h(x)=0$

Support vector machines (SVM)

Large margin classifier

$$
\begin{array}{ccl}
\min _{W} \frac{1}{2} \sum_{j=1}^{n} w_{j}^{2}=\frac{1}{2}\left(\sqrt{w_{1}^{2}+\cdots+w_{n}^{2}}\right)^{2} & =\frac{1}{2}\|W\|^{2} \\
\text { s.t. } & W^{T} x_{i} \geq 1 \text { if } y_{i}=1 & \rightarrow\|W\| \cdot p_{i} \geq 1 \\
& W^{T} x_{i} \leq-1 \text { if } y_{i}=0 & \rightarrow\|W\| \cdot p_{i} \leq-1
\end{array}
$$

Which decision boundaray is found?

$$
h(x)=w_{1} x_{1}+w_{2} x_{2}
$$

$\rightarrow W$ orthogonal to all x with $h(x)=0$

Support vector machines (SVM)

Large margin classifier

$$
\begin{array}{ccl}
\min _{W} \frac{1}{2} \sum_{j=1}^{n} w_{j}^{2}=\frac{1}{2}\left(\sqrt{w_{1}^{2}+\cdots+w_{n}^{2}}\right)^{2} & =\frac{1}{2}\|W\|^{2} \\
\text { s.t. } & W^{\top} x_{i} \geq 1 \text { if } y_{i}=1 & \rightarrow\|W\| \cdot p_{i} \geq 1 \\
& W^{T} x_{i} \leq-1 \text { if } y_{i}=0 & \rightarrow\|W\| \cdot p_{i} \leq-1
\end{array}
$$

Which decision boundaray is found?

$$
h(x)=w_{1} x_{1}+w_{2} x_{2}
$$

$\rightarrow W$ orthogonal to all x with $h(x)=0$
$\Rightarrow \min \frac{1}{2}\|W\|^{2}$ and $\|W\| \cdot p_{i} \geq 1$
necessitate larger p_{i}

Support vector machines (SVM)

Large margin classifier

$$
\begin{array}{ccl}
\min _{W} \frac{1}{2} \sum_{j=1}^{n} w_{j}^{2}=\frac{1}{2}\left(\sqrt{w_{1}^{2}+\cdots+w_{n}^{2}}\right)^{2} & =\frac{1}{2}\|W\|^{2} \\
\text { s.t. } & W^{\top} x_{i} \geq 1 \text { if } y_{i}=1 & \rightarrow\|W\| \cdot p_{i} \geq 1 \\
& W^{\top} x_{i} \leq-1 \text { if } y_{i}=0 & \rightarrow\|W\| \cdot p_{i} \leq-1
\end{array}
$$

Which decision boundaray is found?

$$
h(x)=w_{1} x_{1}+w_{2} x_{2}
$$

$\rightarrow W$ orthogonal to all x with $h(x)=0$
$\Rightarrow \min \frac{1}{2}\|W\|^{2}$ and $\|W\| \cdot p_{i} \geq 1$
necessitate larger p_{i}

Support vector machines (SVM)

Large margin classifier

$$
\begin{array}{ccl}
\min _{W} \frac{1}{2} \sum_{j=1}^{n} w_{j}^{2}=\frac{1}{2}\left(\sqrt{w_{1}^{2}+\cdots+w_{n}^{2}}\right)^{2} & =\frac{1}{2}\|W\|^{2} \\
\text { s.t. } & W^{\top} x_{i} \geq 1 \text { if } y_{i}=1 & \rightarrow\|W\| \cdot p_{i} \geq 1 \\
& W^{\top} x_{i} \leq-1 \text { if } y_{i}=0 & \rightarrow\|W\| \cdot p_{i} \leq-1
\end{array}
$$

Which decision boundaray is found?

$$
h(x)=w_{1} x_{1}+w_{2} x_{2}
$$

$\rightarrow W$ orthogonal to all x with $h(x)=0$
$\Rightarrow \min \frac{1}{2}\|W\|^{2}$ and $\|W\| \cdot p_{i} \geq 1$
necessitate larger p_{i}

Outline

The curse of dimensionality

Dimonsionality reduction

Latent Semantic Indexing

Support Vector Machines
Cost function
Hypothesis
Kernels

Support vector machines (SVM)

Kernels - Non linear decision boundary

Support vector machines (SVM)

Kernels - Non linear decision boundary

Support vector machines (SVM)

Kernels - Non linear decision boundary

Support vector machines (SVM)

Kernels - Non linear decision boundary

$$
\Rightarrow w_{0}+w_{1} k_{1}+w_{2} k_{2}+w_{3} k_{3}+\ldots
$$

Kernel Define kernel via landmarks

Support vector machines (SVM)

Kernels - Non linear decision boundary
$\overbrace{1}^{I_{1}} \overbrace{2} \quad \Rightarrow w_{0}+w_{1} k_{1}+w_{2} k_{2}+w_{3} k_{3}+\ldots$
$\xrightarrow[\mathrm{x}_{1}]{\mathrm{l}_{3}}$
Kernel Define kernel via landmarks

Support vector machines (SVM)

Kernels - Non linear decision boundary

Support vector machines (SVM)

Kernels - Non linear decision boundary

$$
\begin{aligned}
& \mathrm{I}_{1} \mathrm{l}_{2} \quad \Rightarrow w_{0}+w_{1} k_{1}+w_{2} k_{2}+w_{3} k_{3}+\ldots \\
& { }^{1}{ }^{1} \\
& \text { Gaussian: } k\left(x, l_{i}\right)=e^{-\frac{\left\|x-l_{i}\right\|^{2}}{2 \sigma^{2}}} \\
& x \approx I_{i} \Rightarrow k\left(x, l_{i}\right) \approx 1(0 \text { else })
\end{aligned}
$$

Support vector machines (SVM)

Kernels - Non linear decision boundary

$$
\Rightarrow w_{0}+w_{1} k_{1}+w_{2} k_{2}+w_{3} k_{3}+\ldots
$$

Gaussian: $k\left(x, l_{i}\right)=e^{-\frac{\left\|x-l_{i}\right\|^{2}}{2 \sigma^{2}}}$

$$
x \approx I_{i} \Rightarrow k\left(x, l_{i}\right) \approx 1(0 \mathrm{else})
$$

Example: $w_{0}=-0.5, w_{1}=1, w_{2}=1, w_{3}=0$

$$
h(x)=w_{0}+w_{1} k\left(x, l_{1}\right)+w_{2} k\left(x, l_{2}\right)+w_{3} k\left(x, l_{3}\right)
$$

Support vector machines (SVM)

Kernels - Non linear decision boundary

$$
\Rightarrow w_{0}+w_{1} k_{1}+w_{2} k_{2}+w_{3} k_{3}+\ldots
$$

Gaussian: $k\left(x, l_{i}\right)=e^{-\frac{\left\|x-l_{i}\right\|^{2}}{2 \sigma^{2}}}$

$$
x \approx I_{i} \Rightarrow k\left(x, I_{i}\right) \approx 1(0 \mathrm{else})
$$

Example: $w_{0}=-0.5, w_{1}=1, w_{2}=1, w_{3}=0$

$$
h(x)=w_{0}+w_{1} k\left(x, l_{1}\right)+w_{2} k\left(x, l_{2}\right)+w_{3} k\left(x, l_{3}\right)
$$

$$
\sigma=1
$$

Support vector machines (SVM)

Kernels - Non linear decision boundary

$$
\Rightarrow w_{0}+w_{1} k_{1}+w_{2} k_{2}+w_{3} k_{3}+\ldots
$$

Gaussian: $k\left(x, l_{i}\right)=e^{-\frac{\left\|x-l_{i}\right\|^{2}}{2 \sigma^{2}}}$

$$
x \approx I_{i} \Rightarrow k\left(x, I_{i}\right) \approx 1(0 \mathrm{else})
$$

Example: $w_{0}=-0.5, w_{1}=1, w_{2}=1, w_{3}=0$

$$
h(x)=w_{0}+w_{1} k\left(x, l_{1}\right)+w_{2} k\left(x, l_{2}\right)+w_{3} k\left(x, l_{3}\right)
$$

$$
\sigma=1
$$

Support vector machines (SVM)

Kernels - Non linear decision boundary

$$
\Rightarrow w_{0}+w_{1} k_{1}+w_{2} k_{2}+w_{3} k_{3}+\ldots
$$

Gaussian: $k\left(x, l_{i}\right)=e^{-\frac{\left\|x-l_{i}\right\|^{2}}{2 \sigma^{2}}}$

$$
x \approx I_{i} \Rightarrow k\left(x, I_{i}\right) \approx 1(0 \mathrm{else})
$$

Example: $w_{0}=-0.5, w_{1}=1, w_{2}=1, w_{3}=0$

$$
h(x)=w_{0}+w_{1} k\left(x, l_{1}\right)+w_{2} k\left(x, l_{2}\right)+w_{3} k\left(x, l_{3}\right)
$$

$$
\sigma=1
$$

Support vector machines (SVM)

Kernels - Non linear decision boundary
X_{2}

$$
\Rightarrow w_{0}+w_{1} k_{1}+w_{2} k_{2}+w_{3} k_{3}+\ldots
$$

Gaussian: $k\left(x, l_{i}\right)=e^{-\frac{\left\|x-l_{i}\right\|^{2}}{2 \sigma^{2}}}$

$$
x \approx l_{i} \Rightarrow k\left(x, l_{i}\right) \approx 1(0 \mathrm{else})
$$

σ controls the width of the Gaussian
Example: $w_{0}=-0.5, w_{1}=1, w_{2}=1, w_{3}=0$

$$
h(x)=w_{0}+w_{1} k\left(x, l_{1}\right)+w_{2} k\left(x, l_{2}\right)+w_{3} k\left(x, l_{3}\right)
$$

$\sigma=1$

$$
\sigma=0.5
$$

Support vector machines (SVM)

Kernels - Non linear decision boundary
\times_{2}

$$
\Rightarrow w_{0}+w_{1} k_{1}+w_{2} k_{2}+w_{3} k_{3}+\ldots
$$

Gaussian: $k\left(x, l_{i}\right)=e^{-\frac{\left\|x-l_{i}\right\|^{2}}{2 \sigma^{2}}}$

$$
x \approx l_{i} \Rightarrow k\left(x, l_{i}\right) \approx 1 \text { (0 else) }
$$

σ controls the width of the Gaussian
Example: $w_{0}=-0.5, w_{1}=1, w_{2}=1, w_{3}=0$

$$
h(x)=w_{0}+w_{1} k\left(x, l_{1}\right)+w_{2} k\left(x, l_{2}\right)+w_{3} k\left(x, l_{3}\right)
$$

$\sigma=1$

$$
\sigma=0.5
$$

$$
\sigma=2
$$

Support vector machines (SVM)

Kernels - placement of landmarks

Possible choice of initial landmarks: All training-set samples Training of w_{i}

$$
\begin{gathered}
f_{i}=\left[\begin{array}{c}
k\left(x_{i}, l_{1}\right) \\
\vdots \\
k\left(x_{i}, l_{m}\right)
\end{array}\right] \\
\min _{W} C \sum_{i=1}^{m} y_{i} \operatorname{cost}_{y_{i}=1}\left(W^{T} f_{i}\right)+\left(1-y_{i}\right) \cdot \operatorname{cost}_{y_{i}=0}\left(W^{T} f_{i}\right)+\frac{1}{2} \sum_{j=1}^{m} w_{j}^{2}
\end{gathered}
$$

Outline

The curse of dimensionality

Dimonsionality reduction

Latent Semantic Indexing

Support Vector Machines
Cost function
Hypothesis
Kernels

Questions?

Stephan Sigg
stephan.sigg@cs.uni-goettingen.de

Literature

- C.M. Bishop: Pattern recognition and machine learning, Springer, 2007.
- R.O. Duda, P.E. Hart, D.G. Stork: Pattern Classification, Wiley, 2001.

