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Networked World

* 1.26 billion users
facebook [R¥ILITIIET minutes/month

* 555 million users
*.5 billion tweets/day

amazoncom

* 79 million users per month
* 9.65 billion items/year

Alibaba Group
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weibo.com

* 560 million users

* influencing our daily life

* 800 million users

* 500 million users
35 billion on 11/11

* *50% revenue from
network life

=T X7



A Trillion Dollar Opportunity

bridge to connect
physical virtual

[1] Online to Offline is trillion dollar business
http://techcrunch.com/2010/08/07/why-online2offline-commerce-is-a-trillion-dollar-opportunity/
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http://techcrunch.com/2010/08/07/why-online2offline-commerce-is-a-trillion-dollar-opportunity/

Simmelian tie

* Three (a triad) or more of reciprocal strong
ties in a group

* Even stronger than a regular strong tie



“Triangle Laws”

* Real social networks have a lot of triangles

— Friends of friends are friends[wasserman Faust '94]

B,

* Any patterns?

— 2X the friends, 2X the triangles? A

How many different structured

triads can we have?

Christos Faloutsos’s keynote speech on Apr.9



Triads in networks

Triad Significance Profile
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Open Triad to Triadic Closure

(B) (B) (B) (B) (B) (B)
(A) © A © ® © A © & © & ©
0 ) 1 2 3 4 5

However, the formation
mechanism is not clear...

A\ 4

Closed Triad

AWAY
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Problem Formalization

* Given network Gt = (V,E),
YT are candidate open triad:

e Goal: Predict the formation of
triadic closure

f: ({Gt' YtiXt}t=1,...T) — YT+1




Dataset

44 thousand Time span: Aug 29t", 2012 -

newly formed

Sep 29t 2012
closed triads

per day ~_ / 700 thousand
Weibo B nodes
360 thousand new ‘ﬂﬁfj{lﬁ
links N 100 million

following
ML

200 out—degree
per user



Observation - Network Topology

Triadic closure close probability
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Y-axis: probability that each open triad forms triadic closures
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Observation - Demography
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(a) Location

Triadic closure close probability

L(A, B) means A and B are from
the same city
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(b) Gender

O—female; 1—male
e.g., 001 means A and B are
female while C is male.



Structural hole

 When two separate clusters possess non-
redundant information, there is said to be a
structural hole between them

Structural hole spanner

no relationship e

structural hole

Structural
hole
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Observation - Social Role
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larity correlatio (b) Structural hole correlation

O—ordinary user; O—ordinary user;
1—opinion leader 1—structural hole spanner
e.g., 001 means A and B are e.g., 001 means A and B are
ordinary user while C is opinion ordinary user while Cis
leader. structural hole spanner .

Lou T, Tang J. Mining structural hole spanners through information diffusion in social netw%rks,
www2013



Summary

* |ntuitions:
— Men are more inclined to form triadic closure

— Triads of opinion leaders themselves are more
likely to be closed.

e Correlation




THE PROPOSED MODEL AND
RESULTS



Triad Factor Graph (TriadFG) Model
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Solution

* Givenanetwork G ={V,E, X,Y}
* Objective function: pg = logPqy(Y|X, G)

.« P(Y|X,G) x P(X|Y)-P(Y|G) attribute factor f
ITr| d

= — eXP{Z Z a;fj (xu' yi)}

=1 j=

Z_ exp{zc‘ Zk‘ .ukhk(/‘YTrc)}

e O = ({ } U} Correlation

factor h
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Learning Algorithm

Input: network G, learning rate 5
Output: estimated parameters #

Initialize 8 « 0;

repeat

Perform LBP to calculate marginal distribution of unknown variables P(y;|x;. G);
Perform LBP to calculate the marginal distribution of triad ¢, i.e., P(y.|X.. G);
Calculate the gradient of u; according to Eq. 7 (for «; with a similar formula):

a) '
xe) = E[hy(Y,)] = Ep, v.x [ x(Y,))

Hk
Update parameter # with the learning rate n:

Oa)
Onew = Ga1a + 1 - T

until Convergence;

Lou T, Tang J, Hopcroft J, et al. Learning to predict reciprocity and triadic closure in social
networks[J]. ACM Transactions on Knowledge Discovery from Data (TKDD), 2013, 7(2): 5.



Results on the Weibo data

e Baselines: SVM, Logistic

0.890 0.844 0.866 0.882
Logistic 0.882 0.913 0.897 0.885
TriadFG 0.901 0.953 0.926 0.931
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Factor Contribution Analysis

 Demography(D)
* Popularity(S)
* Network Topology(N)

e Structural hole (H) 1

TriadFG  TriadFG-D TriadFG-DSTriadFG-DSN
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Conclusion

Problem: Triadic closure
formation prediction
Observations

— Network Topology

— Demography

— Social Role

Solution: TriadFG model

Future work
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