
Cloud Computing –

Part 1 of 3
Advanced Computer Networks

Summer Semester 2014

Cloud Computing Overview

o Today’s lecture:

o Introduction

o Basic principles and characteristics

o Today and next week:

o Main standards

• E.g., SDN, MapReduce, Hadoop File System, Hive, …

o Next week and 22/5:

o Advances in research

Cloud Computing Overview

o 22/5 lecture:

o Shortened to ~45 minutes

o Afterwards: A guest talk by Ruediger Geib from

Deutsche Telekom

Book Recommendations

o T. Erl, “Cloud Computing: Concepts,

Technology & Architecture”, Prentice Hall

o For a high-level view on Cloud Computing

o A. Bahga, “Cloud Computing: A Hands-

On Approach”

CleanSky EU ITN Project

o An EU training project for young researchers starting in

September 2014

o Project coordination done by our group: http://www.cleansky-itn.eu

o There will be several open PhD/PostDoc positions available

throughout universities/enterprises in Europe

o Göttingen, Trondheim (Norway), Helsinki (Finland), Heidelberg (Germany)

o Requirements for PhD positions:

o Excellent Master’s degree

o You can not have lived for more than one year in the country you apply for

over the past three years

o Research focus on green cloud computing strategies

http://www.cleansky-itn.eu/
http://www.cleansky-itn.eu/
http://www.cleansky-itn.eu/

Introduction to Cloud Computing

Today‘s lecture will cover…

o What?

o What is Cloud Computing?

o Why?

o Why do we need Cloud Computing?

o How?

o How is the Cloud working?

• (in parts next week(s))

What is Cloud Computing?

What is Cloud Computing?

o “Cloud Computing is a model for enabling ubiquitous, convenient,

on-demand network access to a shared pool of configurable

computing resources […] that can be rapidly provisioned and

released with minimal management effort or service provider

interaction.” (NIST)

Essential Characteristics according to NIST:

Resource Pooling

Broad Network Access Rapid Elasticity

Measured Service

On Demand Self-Service

What is Cloud Computing

10 Adopted from: Effectively and Securely Using the Cloud Computing Paradigm by peter Mell, Tim
Grance

o Shared pool of configurable computing resources

o On-demand network access

o Provisioned by the Service Provider

Modes of Clouds

Public Cloud
o Computing infrastructure is hosted by cloud vendor at the vendors premises.

o and can be shared by various organizations.

o E.g. : Amazon, Google, Microsoft, Sales force

Private Cloud
o The computing infrastructure is dedicated to a particular organization and not

shared with other organizations.

o more expensive and more secure when compare to public cloud.

o E.g. : HP data center, IBM, Sun, Oracle, 3tera

Hybrid Cloud
o Organizations may host critical applications on private clouds.

o where as relatively less security concerns on public cloud.

o usage of both public and private together is called hybrid cloud.

Cloud Service Models
Software as a

Service (SaaS)

Platform as a

Service (PaaS)

Infrastructure as a

Service (IaaS)

Google
App
Engine

SalesForce CRM

LotusLive

http://aws.amazon.com/
http://www.rackspace.com/index.php

Example: Google App Engine

o Platform to develop and host web applications on

Googles servers: PaaS

o Dynamic allocation: If requests for an app increase, the

GAE allocates more resources to the app

o SLA: 99.5% availability

o Service for free, but resources are restricted:

o Max 28 CPU hours per day

o 1GB storage space in the High Replication Datastore

o Mail API: Max 100 Emails per day

o Other resources: need to buy

o Apps are sandboxed and run across multiple servers

Example: Google App Engine

o Difference to, e.g., AmazonEC2 as IaaS:

o Platform provides more infrastructure

o Handles the deployment to cluster, monitoring, failover of app

instances

o Requires developers to stick with supported languages (currently

Python and Java), APIs and Frameworks

Why do we need Cloud

Computing?

Background of Cloud Computing

o 1990: Heyday of parallel computing, multi-

processors
o 52% growth in performance per year!

o 2002: The thermal wall
o Speed (frequency) peaks,

but transistors keep

shrinking

o The Multicore revolution
o 15-20 years later than

predicted, we have hit

the performance wall

At the same time…

o Amount of stored data is exploding…

Data Deluge
o Billions of users connected through the net

o WWW, FB, twitter, cell phones, …

o 80% of the data on FB was produced last year

o Storage getting cheaper

o Store more data!

Solving the Impedance Mismatch

o Computers not getting faster,

and we are drowning in data
o How to resolve the dilemma?

o Solution adopted by web-scale

companies
o Go massively distributed

and parallel

The Datacenter is the new

Computer • “Program” == Web search, email,
map/GIS, …

• “Computer” == 10,000’s
computers, storage, network

• Warehouse-sized facilities and
workloads

• Built from less reliable
components than traditional
datacenters

Why Cloud Computing?

o Customer’s perspective:

https://www.youtube.com/watch?v=yMJ75k9X5_8

o Also from a researchers perspective:

o Possibility to run intense experiments

o Offloading of parts of your work to the cloud, collect results

o Our university can use GWDG data center for various purposes

• GWDG cloud storage

• GWDG computing clusters (for simulations etc.)

https://www.youtube.com/watch?v=yMJ75k9X5_8
https://www.youtube.com/watch?v=yMJ75k9X5_8

How is Cloud Computing

implemented?

Characteristics

Common Characteristics:

Low Cost Software

Virtualization Service Orientation

Advanced Security

Homogeneity

Massive Scale Resilient Computing

Geographic Distribution

Virtualization, in computing, refers to the act of creating

a virtual (rather than actual) version of something, including but

not limited to a virtual computer hardware platform, operating

system (OS), storage device, or computer network resources.

http://en.wikipedia.org/wiki/Virtuality
http://en.wikipedia.org/wiki/Computer_hardware
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Data_storage_device
http://en.wikipedia.org/wiki/Computer_network

Virtualization

o Virtual workspaces:

o An abstraction of an execution environment that can be made

dynamically available to authorized clients by using well-defined

protocols,

o Resource quota (e.g. CPU, memory share),

o Software configuration (e.g. OS, provided services).

o Implemented on Virtual Machines (VMs):

o Abstraction of a physical host machine,

o Hypervisor intercepts and emulates instructions from VMs, and

allows management of VMs,

o VMWare, Xen, etc.

Virtualization - Purposes

o Abstraction – to simplify the use of the
underlying resource (e.g., by removing details
of the resource’s structure)

o Replication – to create multiple instances of
the resource (e.g., to simplify management or
allocation)

o Isolation – to separate the uses which clients
make of the underlying resources (e.g., to
improve security)

Virtual Machines

o VM technology allows multiple virtual machines

to run on a single physical machine (also: multi-

tenancy!).

Hardware

Virtual Machine Monitor (VMM) / Hypervisor

Guest OS
(Linux)

Guest OS
(NetBSD)

Guest OS
(Windows)

VM VM VM

App App App App App

Xen

VMWare

UML

Denali

etc.

26

Two Types of Hypervisors

VMware ESX, Microsoft Hyper-V,
Xen

Hardware

Hypervisor

VM1 VM2

Type 1 (native/bare-metal)

Host

Guest

Native

 (also called: bare-metal)

Has complete control over hardware

Doesn’t have to “fight” an OS

Two Types of Hypervisors

Hardware

OS

Process Hypervisor

VM1 VM2

Type 2 (hosted)

VMware Workstation, Microsoft Virtual
PC, Sun VirtualBox, QEMU, KVM

Host

Guest

Hosted

Avoid code duplication: need not code a process

scheduler, memory management system – the

OS already does that

Can run native processes alongside VMs

CPU Virtualization Approaches

o Full Virtualization:

o Complete decoupling of guest OS from underlying hardware

o OS not aware it is virtualized, sensitive calls: binary translation

o Simplest, most secure approach

o Para-Virtualization

o Guest OS kernel is modified to enable communication with

hypervisor (hypercalls)

o Allows for improvement in performance and efficiency

o But: low portability, high maintenance overhead

o Hardware-assisted Virtualization:

o Privileged and sensitive calls are set to automatically trap the HV

o No need for translation or para-virtualization

Memory Virtualization

o Isolation/protection of
Guest OS address
spaces

VMM
machine

VMM GuestOS

“shadow” page tables page tables

process
virtual

OS
physical

Load Balancing

o The cloud needs to match performance requirements of

applications

o Load balancing: distribute incoming application requests

across multiple resources

o Can scale to very high demand by adding resources

(performance)

o Allows for continuation of service in case of resource failure

(reliability)

o Uses standard balancing algorithms (as seen e.g. in CN)

o Round robin, WFQ, priority, overflow

o Also more network specific: low latency, least connections

Load Balancing: Persistance

o Load balancing can route successive requests from an

application to different resources

o How does each resource know the state of the

application? Persistance mechanism based on sessions!

Load Balancing: Persistance

o Three types:

o Stickiness: all requests belonging to a user session routed to

the same server – what if server fails (no failover!)?

o Session database: store session in external, replicated session

database – overhead? (example: ASP.net session DB)

o Client side: store session info in browser cookies or URL

rewrites – very efficient, but at times insecure (e.g., MITM attack)

Bottleneck: The Network

 “The average cloud environment might have 50

dedicated servers to one admin, and what you really

need to get to is 500 servers to one admin, or what

happened in the case of Microsoft, 10,000 servers.

Without automation we don't have speed and scale - the

very reason we want to go to.” (Microsoft)

o Complex with standard IP networking (mainly

manual processes: have to manually configure

each device with physical presence!)

Bottleneck: The Network

 “Even simple topologies take days or weeks to create.

Workload placement and mobility are restricted by

physical network limitations and hardware dependencies

require vendor-specific expertise. Network configuration

is performed manually and maintenance is both

expensive and resource-intensive.” (VMWare)

o We need automation!

Software Defined Networking

o Solution: Software-Defined-Networking (SDN)

o Decouples the control plane from the data plane

Software Defined Networking

Software Defined Networking

o SDN makes the network programmable

o OSPF, DiffServ, IntServ, MPLS, RSVP?

o All such protocols can be done in software,

controlled by a central instance

o Scalable, easily managable, better interoperability

SDN Components at a glance

SDN Components at a glance

o Programmable Open APIs:

o Connects applications with control plane

o Allows for programming of routing, QoS, etc.

o Standard Communication Interface (e.g.,

OpenFlow):

o Between control and data planes

o Allows direct access to forwarding plane

Materials by the Open Networking Foundation:

https://www.opennetworking.org/

SDN Components at a glance

o Network Controller (logically centralized):

o Positioned between both above, has full control over

the data plane

o Sets up rules, actions, etc. for the network devices

o Core element of SDN

SDN and Cloud?

o E.g., network virtualization

SDN and Cloud!

o In the cloud, SDN further allows for…

o elastic resource allocation (e.g., to match QoS

agreements)

o distribution of the load on links (e.g., between

backbone and application servers in SaaS)

o scalability (no need to manually configure each of

thousands (or even millions?) of devices)

o overhead reduction

o …and more

OpenFlow – The SDN Protocol

o Communication between the controller and

the network devices (i.e., switches)

Specification by the Open Networking Foundation:

https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-

specifications/openflow/openflow-spec-v1.3.4.pdf (March 2014)

https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.4.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.4.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.4.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.4.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.4.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.4.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.4.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.4.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.4.pdf

OpenFlow – The SDN Protocol

o Main components: Flow and Group Tables

o Controller can manipulate these tables via the

OpenFlow protocol (add, update, delete)

o Flow Table: reactively or proactively defines how

incoming packets are forwarded

o Group Table: additional processing

OpenFlow – Switches

o Two different versions of an OpenFlow Switch

o OF-only (packets can only be processed by OF

tables) and OF-hybrid (allow optional normal

Ethernet handling (see CN lecture))

o OF-only: all packets go through a pipeline

o Each pipeline contains one or multiple flow tables

with each containing one or multiple flow entries

OpenFlow – Switches

o Incoming packets are matched against Table

0 first

o Find highest priority match and execute

instructions (might be a Goto-Table

instruction)

o Goto: Only possible forward

OpenFlow – Switches

o Flow Table entry structure:

o Match fields: where matching applies (i.e.,

ingress port, packet headers, etc.)

o Priority: matching precedence of flow entry

o Counters: update on packet match with entry

o Instructions: what to do with the packet

o Timeout: max idle time of flow before ending

OpenFlow – Switches

o Flow Table entry structure:

o Match fields: where matching applies (i.e.,

ingress port, packet (IP, eth) headers, etc.)

o Priority: matching precedence of flow entry

o A flow entry with all match fields as wildcard

and priority 0: table miss entry

OpenFlow – Switches

o If no match in table: table miss

o Handling: depends on table configuration –

 might be drop packet, forward to other table,

forward to controller

o Forward to controller allows to set up a flow

entry (i.e., at the beginning of a flow)

OpenFlow - Matching

OpenFlow – Switches

o Group Table entry structure:

o Group Identifier: 32-bit ID to uniquely define

group on the switch (locally)

o Group Type: indirect/all/fast failover/select

o Specifies which action bucket is executed

o Counters: update on packet processed

o Action Buckets: ordered list of buckets, each

containing a set of instructions

OpenFlow – Switches

o Group Table entry structure:

o Group Tables allow for more complex

forwarding

o E.g., multicast: use all group type to execute all

action buckets (packet will be cloned for each

bucket, and then forwarded through the instruction

set)

OpenFlow – OpenFlow Channel

o Different message types available:

o Controller-to-Switch, Asynchronous or Symmetric

o Controller-to-Switch:

o Lets the controller control the switch

o E.g., Modify-State command to

 manipulate flow tables

o Asynchronous:

o Switch-to-controller requests

 (e.g., at table miss)

o Symmetric:

o May be sent from both ends (e.g., echo command)

OpenFlow - Example

OpenFlow - Example

SRC: H2

DST: H4

OpenFlow - Example

SRC: H2

DST: H4 ?

OpenFlow - Example

SRC: H2

DST: H4
Packet-IN

OpenFlow - Example

SRC: H2

DST: H4
Packet-OUT

Action: eth2

OpenFlow - Example

SRC: H2

DST: H4

OpenFlow - Example

SRC: H2

DST: H4

OpenFlow - Example

SRC: H2

DST: H4 ?

OpenFlow - Example

SRC: H2

DST: H4 !

OpenFlow - Example

SRC: H2

DST: H4

If you’re interested…

o https://www.opennetworking.org/

o “Why SDN is going to change everything”

(Bethany Mayer, SVP of Hewlett Packard (HP))

 http://h17007.www1.hp.com/de/de/networking/so

lutions/technology/sdn/#sdn-video

o N. McKeown, INFOCOM 2009 keynote on SDN:

 http://www.cs.rutgers.edu/~badri/552dir/papers/i

ntro/nick09.pdf

https://www.opennetworking.org/
http://h17007.www1.hp.com/de/de/networking/solutions/technology/sdn/
http://h17007.www1.hp.com/de/de/networking/solutions/technology/sdn/
http://h17007.www1.hp.com/de/de/networking/solutions/technology/sdn/
http://h17007.www1.hp.com/de/de/networking/solutions/technology/sdn/
http://h17007.www1.hp.com/de/de/networking/solutions/technology/sdn/
http://www.cs.rutgers.edu/~badri/552dir/papers/intro/nick09.pdf
http://www.cs.rutgers.edu/~badri/552dir/papers/intro/nick09.pdf
http://www.cs.rutgers.edu/~badri/552dir/papers/intro/nick09.pdf

What’s in the Cloud Ecosystem?

o Data sharing
o File systems like Google File System (GFS), Hadoop

File System (HDFS), …

o Data analysis & programming abstractions
o Google MapReduce, PIG, Hive, Spark, …

o Multiplexing of resources & coordination
o Mesos, YARN (MRv2), ZooKeeper, BookKeeper, …

o (DataBases
o Cassandra (No-SQL without single point of failure))

