
Transport Layer – Part II

Telematics, Winter 2009/2010

Last Session

Emp.1 Emp.2 Emp.3

Secretary

Post man

Driver
2: Link Layer (protocols)

3: Network Layer (protocol)

4: Transport Layer
(protocols)

5: App. Layer (processes)

Company Host

P1P1P2

SP: 6428

DP: 5775

SP: 5775

21

Transport Layer 4-2

1: Physical Layer (medium)
Road

SP: 5775

DP: 6428

source port # dest port #

32 bits

01101000 01101001
(h) (i)

length 00101110

You Friend

0176

OK

1234

Not OK, repeat please

1234

OK

3.0 $

$$

543

Chapter 4 outline

o 3.1 Transport-layer

services

o 3.2 Multiplexing and

demultiplexing

o 3.3 Connectionless

o 3.5 Connection-oriented

transport: TCP

o segment structure

o reliable data transfer

o flow control

3-3

o 3.3 Connectionless

transport: UDP

o 3.4 Principles of reliable

data transfer

o flow control

o connection management

o 3.6 Principles of

congestion control

o 3.7 TCP congestion

control

Transport Layer

Pipelining Protocols

Go-back-N: big picture:

o Sender can have up to
N unacked packets in
pipeline

o Rcvr only sends
cumulative acks

Selective Repeat: big pic

o Sender can have up to
N unacked packets in
pipeline

o Rcvr acks individual
packets

Transport Layer 3-4

o Rcvr only sends
cumulative acks
o Doesn’t ack packet if

there’s a gap

o Sender has timer for
oldest unacked packet
o If timer expires,

retransmit all unacked
packets

o Rcvr acks individual
packets

o Sender maintains timer
for each unacked
packet
o When timer expires,

retransmit only unack
packet

Go-Back-N

Sender:

o k-bit seq # in pkt header

o “window” of up to N, consecutive unack’ed pkts allowed

3-5

o ACK(n): ACKs all pkts up to, including seq # n - “cumulative ACK”

o may receive duplicate ACKs (see receiver)

o timer for each in-flight pkt

o timeout(n): retransmit pkt n and all higher seq # pkts in window

Transport Layer

Applet Demo

o http://media.pearsoncmg.com/aw/aw_kurose_

network_2/applets/go-back-n/go-back-n.html

o http://media.pearsoncmg.com/aw/aw_kurose_o http://media.pearsoncmg.com/aw/aw_kurose_

network_3/applets/SelectRepeat/SR.html

o (Self Study)

Transport Layer 4-6

GBN: sender extended FSM

rdt_send(data)

if (nextseqnum < base+N) {

sndpkt[nextseqnum] = make_pkt(nextseqnum,data,chksum)

udt_send(sndpkt[nextseqnum])

if (base == nextseqnum)

start_timer

nextseqnum++

}

else

refuse_data(data)
base=1

Λ

3-7

Wait
start_timer

udt_send(sndpkt[base])

udt_send(sndpkt[base+1])

$

udt_send(sndpkt[nextseqnum-1])

timeout

base = getacknum(rcvpkt)+1

If (base == nextseqnum)

stop_timer

else

start_timer

rdt_rcv(rcvpkt) &&

notcorrupt(rcvpkt)

base=1

nextseqnum=1

rdt_rcv(rcvpkt)

&& corrupt(rcvpkt)

Transport Layer

GBN: receiver extended FSM

Wait

udt_send(sndpkt)

default

rdt_rcv(rcvpkt)

&& notcurrupt(rcvpkt)

&& hasseqnum(rcvpkt,expectedseqnum)

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_pkt(expectedseqnum,ACK,chksum)

udt_send(sndpkt)

expectedseqnum++

expectedseqnum=1

sndpkt =

make_pkt(expectedseqnum,ACK,chksum)

Λ

3-8

ACK-only: always send ACK for correctly-received pkt with

highest in-order seq #

o may generate duplicate ACKs

o need only remember expectedseqnum

o out-of-order pkt:

o discard (don’t buffer) -> no receiver buffering!

o Re-ACK pkt with highest in-order seq #

Transport Layer

GBN in

action

3-9Transport Layer

Selective Repeat

o receiver individually acknowledges all correctly

received pkts

o buffers pkts, as needed, for eventual in-order delivery to

upper layer

o sender only resends pkts for which ACK not

received

3-10

received

o sender timer for each unACKed pkt

o sender window

o N consecutive seq #’s

o again limits seq #s of sent, unACKed pkts

Transport Layer

Selective repeat: sender, receiver windows

3-11Transport Layer

Selective repeat

data from above :

o if next available seq # in

window, send pkt

timeout(n):

o resend pkt n, restart timer

sender

pkt n in [rcvbase, rcvbase+N-1]

o send ACK(n)

o out-of-order: buffer

o in-order: deliver (also deliver

buffered, in-order pkts),

advance window to next not-

receiver

3-12

o resend pkt n, restart timer

ACK(n) in [sendbase,sendbase+N]:

o mark pkt n as received

o if n smallest unACKed pkt,

advance window base to

next unACKed seq #

advance window to next not-

yet-received pkt

pkt n in [rcvbase-N,rcvbase-1]

o ACK(n)

otherwise:

o ignore

Transport Layer

Selective repeat in action

3-13Transport Layer

Selective repeat:

dilemma

Example:

o seq #’s: 0, 1, 2, 3

o window size=3

o receiver sees no

3-14

o receiver sees no

difference in two

scenarios!

o incorrectly passes

duplicate data as new in

(a)

Notice: Window size should

be not too large, e.g. ½ of

sequence range.
Transport Layer

Chapter 4 outline

o 3.1 Transport-layer

services

o 3.2 Multiplexing and

demultiplexing

o 3.3 Connectionless

o 3.5 Connection-oriented

transport: TCP

o segment structure

o reliable data transfer

o flow control

Transport Layer 3-15

o 3.3 Connectionless

transport: UDP

o 3.4 Principles of reliable

data transfer

o flow control

o connection management

o 3.6 Principles of

congestion control

o 3.7 TCP congestion

control

TCP: Overview RFCs: 793, 1122, 1323, 2018,
2581

o full duplex data:

o bi-directional data flow in

same connection

o MSS: maximum segment

size

connection-oriented:

o point-to-point:

o one sender, one receiver

o reliable, in-order byte

steam:

o no “message boundaries”

Transport Layer 3-16

o connection-oriented:

o handshaking (exchange

of control msgs) init’s

sender, receiver state

before data exchange

o flow controlled:

o sender will not overwhelm

receiver

o no “message boundaries”

o pipelined:

o TCP congestion and flow

control set window size

o send & receive buffers

socket

door

TCP

send buffer

TCP

receive buffer

socket

door

segment

application

writes data
application

reads data

TCP segment structure

source port # dest port #

32 bits

sequence number

acknowledgement number

Receive window

Urg data pnterchecksum
FSRPAU

head
len

not
used

URG: urgent data
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used) # bytes

rcvr willing

counting
by bytes
of data
(not segments!)

Transport Layer 3-17

application
data
(variable length)

Urg data pnterchecksum

Options (variable length)RST, SYN, FIN:
connection estab
(setup, teardown

commands)

rcvr willing
to accept

Internet
checksum
(as in UDP)

TCP seq. #’s and ACKs

Seq. #’s:

o byte stream

“number” of first

byte in segment’s

data

ACKs:

seq # of next byte

Host A Host B

User

types

‘C’
host ACKs

receipt of

‘C’, echoes

Transport Layer 3-18

o seq # of next byte

expected from other

side

o cumulative ACK

Q: how receiver handles

out-of-order segments

o A: TCP spec doesn’t

say, - up to

implementor

host ACKs

receipt

of echoed

‘C’

‘C’, echoes

back ‘C’

time
simple telnet scenario

TCP Round Trip Time and Timeout

Q: how to set TCP

timeout value?

o longer than RTT

o but RTT varies

o too short: premature

timeout

Q: how to estimate RTT?

o SampleRTT: measured time from

segment transmission until ACK

receipt

o ignore retransmissions

o SampleRTT will vary, want

Transport Layer 3-19

timeout

o unnecessary

retransmissions

o too long: slow reaction to

segment loss

o SampleRTT will vary, want

estimated RTT “smoother”

o average several recent

measurements, not just current
SampleRTT

TCP Round Trip Time and Timeout

EstimatedRTT = (1- αααα)*EstimatedRTT + αααα*SampleRTT

� Exponential weighted moving average

� influence of past sample decreases exponentially fast

� typical value: αααα = 0.125

Transport Layer 3-20

Example RTT estimation:
RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

250

300

350

R
T

T
 (

m
il

lis
ec

o
n

d
s)

Transport Layer 3-21

100

150

200

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

R
T

T
 (

m
il

lis
ec

o
n

d
s)

SampleRTT Estimated RTT

TCP Round Trip Time and Timeout

Setting the timeout

o EstimtedRTT plus “safety margin”

o large variation in EstimatedRTT -> larger safety margin

o first estimate of how much SampleRTT deviates from

EstimatedRTT:

Transport Layer 3-22

TimeoutInterval = EstimatedRTT + 4*DevRTT

DevRTT = (1-ββββ)*DevRTT +

ββββ*|SampleRTT-EstimatedRTT|

(typically, ββββ = 0.25)

Then set timeout interval:

Chapter 4 outline

o 3.1 Transport-layer

services

o 3.2 Multiplexing and

demultiplexing

o 3.3 Connectionless

o 3.5 Connection-oriented

transport: TCP

o segment structure

o reliable data transfer

o flow control

Transport Layer 3-23

o 3.3 Connectionless

transport: UDP

o 3.4 Principles of reliable

data transfer

o flow control

o connection management

o 3.6 Principles of

congestion control

o 3.7 TCP congestion

control

TCP reliable data transfer

o TCP creates rdt service

on top of IP’s unreliable

service

o Pipelined segments

o Cumulative acks

o Retransmissions are

triggered by:

o timeout events

o duplicate acks

o Initially consider

Transport Layer 3-24

o Cumulative acks

o TCP uses single

retransmission timer

o Initially consider

simplified TCP sender:

o ignore duplicate acks

o ignore flow control,

congestion control

TCP sender events:

data rcvd from app:

o Create segment with

seq #

o seq # is byte-stream

number of first data

byte in segment

timeout:

o retransmit segment that

caused timeout

o restart timer

Ack rcvd:

o If acknowledges

Transport Layer 3-25

byte in segment

o start timer if not already

running (think of timer

as for oldest unacked

segment)

o expiration interval:
TimeOutInterval

o If acknowledges

previously unacked

segments

o update what is known to

be acked

o start timer if there are

outstanding segments

TCP

sender
(simplified)

NextSeqNum = InitialSeqNum

SendBase = InitialSeqNum

loop (forever) {

switch(event)

event: data received from application above

create TCP segment with sequence number NextSeqNum

if (timer currently not running)

start timer

pass segment to IP

NextSeqNum = NextSeqNum + length(data)

event: timer timeout

Comment:

• SendBase-1: last

cumulatively

Transport Layer 3-26

event: timer timeout

retransmit not-yet-acknowledged segment with

smallest sequence number

start timer

event: ACK received, with ACK field value of y

if (y > SendBase) {

SendBase = y

if (there are currently not-yet-acknowledged segments)

start timer

}

} /* end of loop forever */

cumulatively

ack’ed byte

Example:

• SendBase-1 = 71;

y= 73, so the rcvr

wants 73+ ;

y > SendBase, so

that new data is

acked

TCP: retransmission scenarios

Host A Host B

S
e
q
=

9
2
 t
im

e
o
u
t

Host A

loss

ti
m

e
o
u
t

Host B

X

Transport Layer 3-27

time

premature timeout
S

e
q
=

9
2
 t
im

e
o
u
t

loss

lost ACK scenario
time
S

e
q
=

9
2
 t
im

e
o
u
t

SendBase

= 100

SendBase

= 120

SendBase

= 120

Sendbase

= 100

TCP retransmission scenarios (more)

Host A

loss

ti
m

e
o
u
t

Host B

X

Transport Layer 3-28

loss

Cumulative ACK scenario

time

SendBase

= 120

TCP ACK generation [RFC 1122, RFC 2581]

Event at Receiver

Arrival of in-order segment with

expected seq #. All data up to

expected seq # already ACKed

Arrival of in-order segment with

TCP Receiver action

Delayed ACK. Wait up to 500ms

for next segment. If no next segment,

send ACK

Immediately send single cumulative

Transport Layer 3-29

Arrival of in-order segment with

expected seq #. One other

segment has ACK pending

Arrival of out-of-order segment

higher-than-expect seq. # .

Gap detected

Arrival of segment that

partially or completely fills gap

Immediately send single cumulative

ACK, ACKing both in-order segments

Immediately send duplicate ACK,

indicating seq. # of next expected byte

Immediate send ACK, provided that

segment starts at lower end of gap

Fast Retransmit

o Time-out period often

relatively long:

o long delay before

resending lost packet

o Detect lost segments

o If sender receives 3

ACKs for the same data,

it supposes that segment

after ACKed data was

lost:

Transport Layer 3-30

o Detect lost segments

via duplicate ACKs.

o Sender often sends

many segments back-to-

back

o If segment is lost, there

will likely be many

duplicate ACKs.

lost:

o fast retransmit: resend

segment before timer

expires

Host A

ti
m

e
o
u
t

Host B

X

Transport Layer 3-31

time

Figure 3.37 Resending a segment after triple duplicate ACK

event: ACK received, with ACK field value of y

if (y > SendBase) {

SendBase = y

if (there are currently not-yet-acknowledged segments)

start timer

}

Fast retransmit algorithm:

Transport Layer 3-32

}

else {

increment count of dup ACKs received for y

if (count of dup ACKs received for y = 3) {

resend segment with sequence number y

}

a duplicate ACK for

already ACKed segment
fast retransmit

Chapter 4 outline

o 3.1 Transport-layer

services

o 3.2 Multiplexing and

demultiplexing

o 3.3 Connectionless

o 3.5 Connection-oriented

transport: TCP

o segment structure

o reliable data transfer

o flow control

Transport Layer 3-33

o 3.3 Connectionless

transport: UDP

o 3.4 Principles of reliable

data transfer

o flow control

o connection management

o 3.6 Principles of

congestion control

o 3.7 TCP congestion

control

Analogy: Flow Control

o Assumptions:
o Secretary delivers mail at

rate of 4 letters/h

o Employee Bill processes

mail at 1 letter/h.

time Mail read Mail on

table

9:00 0 4

10:00 1 7

11:00 2 10

12:00 3 13 !mail at 1 letter/h.

o Table has place for 10

letters, more will drop on

floor.

o After half a day his table

overflows, letters get lost.

o Sender needs to decrease

sending rate.

12:00 3 13 !

Transport Layer 3-34

Bill

TCP Flow Control

o receive side of TCP

connection has a

receive buffer:

o speed-matching

sender won’t overflow

receiver’s buffer by

transmitting too much,

too fast

flow control

Transport Layer 3-35

o speed-matching

service: matching the

send rate to the

receiving app’s drain

rate
o app process may be

slow at reading from

buffer

TCP Flow control: how it works

(Suppose TCP receiver

o Rcvr advertises spare

room by including value
of RcvWindow in

segments

o Sender limits unACKed
data to RcvWindow

Transport Layer 3-36

(Suppose TCP receiver

discards out-of-order

segments)

o spare room in buffer

= RcvWindow

= RcvBuffer-[LastByteRcvd -

LastByteRead]

data to RcvWindow

o guarantees receive buffer
doesn’t overflow

Chapter 4 outline

o 3.1 Transport-layer

services

o 3.2 Multiplexing and

demultiplexing

o 3.3 Connectionless

o 3.5 Connection-oriented

transport: TCP

o segment structure

o reliable data transfer

o flow control

Transport Layer 3-37

o 3.3 Connectionless

transport: UDP

o 3.4 Principles of reliable

data transfer

o flow control

o connection management

o 3.6 Principles of

congestion control

o 3.7 TCP congestion

control

TCP Connection Management

Recall: TCP sender, receiver

establish “connection” before

exchanging data segments

o initialize TCP variables:

o seq. #s

o buffers, flow control info
(e.g. RcvWindow)

Three way handshake:

Step 1: client host sends TCP

SYN segment to server

o specifies initial seq #

o no data

Step 2: server host receives SYN,

Transport Layer 3-38

(e.g. RcvWindow)

o client: connection initiator
Socket clientSocket = new

Socket("hostname","port

number");

o server: contacted by client
Socket connectionSocket =

welcomeSocket.accept();

Step 2: server host receives SYN,

replies with SYNACK segment

o server allocates buffers

o specifies server initial seq. #

Step 3: client receives SYNACK,

replies with ACK segment,

which may contain data

TCP Connection Management (cont.)

Closing a connection:

client closes socket:
clientSocket.close();

Step 1: client end system

client server

close

close

Transport Layer 3-39

Step 1: client end system

sends TCP FIN control

segment to server

Step 2: server receives FIN,

replies with ACK. Closes

connection, sends FIN.

close

closed

ti
m

e
d
 w

a
it

TCP Connection Management (cont.)

Step 3: client receives FIN,

replies with ACK.

o Enters “timed wait” - will

respond with ACK to

received FINs

client server

closing

closing

Transport Layer 3-40

received FINs

Step 4: server, receives ACK.

Connection closed.

Note: with small modification,

can handle simultaneous

FINs.

closing

closed

ti
m

e
d
 w

a
it

closed

TCP Connection Management (cont)

TCP server

lifecycle

Transport Layer 3-41

TCP client

lifecycle

Chapter 4 outline

o 3.1 Transport-layer

services

o 3.2 Multiplexing and

demultiplexing

o 3.3 Connectionless

o 3.5 Connection-oriented

transport: TCP

o segment structure

o reliable data transfer

o flow control

Transport Layer 3-42

o 3.3 Connectionless

transport: UDP

o 3.4 Principles of reliable

data transfer

o flow control

o connection management

o 3.6 Principles of

congestion control

o 3.7 TCP congestion

control

Principles of Congestion Control

Congestion:

o informally: “too many sources sending too much data

too fast for network to handle”

o different from flow control! (overflow at receiver v.s.

overflow on path routers)

Transport Layer 3-43

overflow on path routers)

o manifestations:

o lost packets (buffer overflow at routers)

o long delays (queueing in router buffers)

o a top-10 problem!

Causes/costs of congestion: scenario 1

o two senders, two

receivers

o one router, infinite

buffers

o no retransmission

unlimited shared

output link buffers

Host A
λin : original data

Host B

λout

Transport Layer 3-44

o no retransmission

o large delays

when congested

o maximum

achievable

throughput

Causes/costs of congestion: scenario 2

o one router, finite buffers

o sender retransmission of lost packet

Host

A
λin : original
data

λout

λ' : original data, plus

Transport Layer 3-45

finite shared output

link buffers

Host B

λ'in : original data, plus
retransmitted data

Causes/costs of congestion: scenario 2

o always: (goodput)

o “perfect” retransmission only when loss:

o retransmission of delayed (not lost) packet makes larger (than

perfect case) for same

λ
in

λ
out

=

λ
in

λ
out

>

λ
in

λ
out

R/2R/2 R/2

Transport Layer 3-46

“costs” of congestion:

� more work (retrans) for given “goodput”

� unneeded retransmissions: link carries multiple copies of pkt

R/2
λin

λ
o
u
t

b.

R/2
λin

λ
o
u
t

a.

R/2
λin

λ
o
u
t

c.

R/4

R/3

Causes/costs of congestion: scenario 3

o four senders

o multihop paths

o timeout/retransmit

λ
in

Q: what happens as

and increase ?λ
in

Host A
λin : original data

λout

λ'in : original data, plus
retransmitted data

Transport Layer 3-47

finite shared output

link buffers

Host B

Causes/costs of congestion: scenario 3

H

o

s

t

A

H

o

s

t

B

λ
o

u

t

Transport Layer 3-48

Another “cost” of congestion:

� when packet dropped, any “upstream transmission

capacity used for that packet was wasted!

Approaches towards congestion control

End-end congestion

control:

o no explicit feedback from

network

Network-assisted

congestion control:

o routers provide feedback to

end systems

Two broad approaches towards congestion control:

Transport Layer 3-49

network

o congestion inferred from

end-system observed loss,

delay

o approach taken by TCP

end systems

o single bit indicating

congestion (SNA,

DECbit, TCP/IP ECN,

ATM)

o explicit rate sender

should send at

Case study: ATM ABR congestion control

ABR: available bit rate:

o “elastic service”

o if sender’s path

“underloaded”:

o sender should use

RM (resource management)

cells:

o sent by sender, interspersed

with data cells

o bits in RM cell set by switches

Transport Layer 3-50

available bandwidth

o if sender’s path congested:

o sender throttled to

minimum guaranteed

rate

(“network-assisted”)

o NI bit: no increase in rate

(mild congestion)

o CI bit: congestion indication

o RM cells returned to sender by

receiver, with bits intact

Case study: ATM ABR congestion control

Transport Layer 3-51

o two-byte ER (explicit rate) field in RM cell

o congested switch may lower ER value in cell

o sender’ send rate thus maximum supportable rate on path

o EFCI bit in data cells: set to 1 in congested switch

o if data cell preceding RM cell has EFCI set, sender sets CI bit

in returned RM cell

Chapter 4 outline

o 3.1 Transport-layer

services

o 3.2 Multiplexing and

demultiplexing

o 3.3 Connectionless

o 3.5 Connection-oriented

transport: TCP

o segment structure

o reliable data transfer

o flow control

Transport Layer 3-52

o 3.3 Connectionless

transport: UDP

o 3.4 Principles of reliable

data transfer

o flow control

o connection management

o 3.6 Principles of

congestion control

o 3.7 TCP congestion

control

TCP congestion control: additive increase,

multiplicative decrease

� Approach: increase transmission rate (window size),

probing for usable bandwidth, until loss occurs

� additive increase: increase CongWin by 1 MSS

every RTT until loss detected

�multiplicative decrease: cut CongWin in half after loss

Transport Layer 3-53

8 Kbytes

16 Kbytes

24 Kbytes

time

congestion

window

timec
o
n
g
e
s
ti
o
n
 w

in
d
o

w
 s

iz
e

Saw tooth

behavior: probing

for bandwidth

TCP Congestion Control: details

o sender limits transmission:
LastByteSent-LastByteAcked

≤≤≤≤ CongWin

o Roughly,

How does sender

perceive congestion?

o loss event = timeout or

3 duplicate acks

o TCP sender reduces CongWin

Transport Layer 3-54

o CongWin is dynamic, function of

perceived network congestion

o TCP sender reduces
rate (CongWin) after

loss event

three mechanisms:

o AIMD

o slow start

o conservative after

timeout events

rate =
CongWin
RTT

Bytes/sec

TCP Slow Start

o When connection begins,
CongWin = 1 MSS

o Example: MSS = 500 bytes

& RTT = 200 msec

o initial rate = 20 kbps

� When connection begins,
increase rate
exponentially fast until
first loss event

Transport Layer 3-55

o available bandwidth may

be >> MSS/RTT

o desirable to quickly ramp

up to respectable rate

TCP Slow Start (more)

o When connection

begins, increase rate

exponentially until first

loss event:

o double CongWin every

Host A

R
T
T

Host B

Transport Layer 3-56

o double CongWin every

RTT

o done by incrementing
CongWin for every ACK

received

o Summary: initial rate is

slow but ramps up

exponentially fast time

Refinement: inferring loss

o After 3 dup ACKs:

o CongWin is cut in half

o window then grows

linearly

o But after timeout event:

� 3 dup ACKs indicates
network capable of

Philosophy:

Transport Layer 3-57

o But after timeout event:

o CongWin instead set to

1 MSS;

o window then grows

exponentially

o to a threshold, then

grows linearly

network capable of
delivering some segments
� timeout indicates a
“more alarming”
congestion scenario

Refinement

Q: When should the

exponential

increase switch to

linear?

A: When CongWin

gets to 1/2 of its

value before

Transport Layer 3-58

value before

timeout.

Implementation:

o Variable Threshold

o At loss event, Threshold is

set to 1/2 of CongWin just

before loss event

Summary: TCP Congestion Control

o When CongWin is below Threshold, sender in

slow-start phase, window grows exponentially.

o When CongWin is above Threshold, sender is in

congestion-avoidance phase, window grows linearly.

Transport Layer 3-59

congestion-avoidance phase, window grows linearly.

o When a triple duplicate ACK occurs, Threshold set

to CongWin/2 and CongWin set to Threshold.

o When timeout occurs, Threshold set to CongWin/2

and CongWin is set to 1 MSS.

TCP sender congestion control

State Event TCP Sender Action Commentary

Slow Start

(SS)

ACK receipt

for previously

unacked

data

CongWin = CongWin + MSS,

If (CongWin > Threshold)

set state to “Congestion

Avoidance”

Resulting in a doubling of

CongWin every RTT

Congestion

Avoidance

(CA)

ACK receipt

for previously

unacked

data

CongWin = CongWin+MSS *

(MSS/CongWin)

Additive increase, resulting

in increase of CongWin by

1 MSS every RTT

Transport Layer 3-60

data

SS or CA Loss event

detected by

triple

duplicate

ACK

Threshold = CongWin/2,

CongWin = Threshold,

Set state to “Congestion

Avoidance”

Fast recovery,

implementing multiplicative

decrease. CongWin will not

drop below 1 MSS.

SS or CA Timeout Threshold = CongWin/2,

CongWin = 1 MSS,

Set state to “Slow Start”

Enter slow start

SS or CA Duplicate

ACK

Increment duplicate ACK count

for segment being acked

CongWin and Threshold not

changed

TCP throughput

o What’s the average throughout of TCP as a

function of window size and RTT?

o Ignore slow start

o Let W be the window size when loss occurs.

Transport Layer 3-61

o Let W be the window size when loss occurs.

o When window is W, throughput is W/RTT

o Just after loss, window drops to W/2,

throughput to W/2RTT.

o Average throughout: .75 W/RTT

Chapter 4: Summary

o principles behind transport

layer services:

o multiplexing,

demultiplexing

o reliable data transfer

Transport Layer 3-62

o flow control

o congestion control

o instantiation and

implementation in the

Internet

o UDP

o TCP

Next:

o Networked

Multmedia

Thank you

Any questions?

