Introduction to Social Networks

Advanced Computer Networks Summer Semester 2012

Social Network

Social Network

- A network made up by a set of individuals interconnecting with each other basing on social relationships (such as friendships, partnerships, etc.)
- Entity: a basic unit of network
- Link: interconnection between entities
- Behavior and dynamics
 - Each individual's actions have implicit consequences for the outcomes of everyone in the system
 - Individual actions are not in isolation: cause-effect
 - Changes in a product, a Web site, or a government program
 - The rich get richer; winners take all; small advantages are magnified to a critical mass; new ideas get attention that becomes viral

Network: Friendship

Figure 1.1: The social network of friendships within a 34-person karate club [421].

http://revolution-computing.typepad.com/.a/6a010534b1db25970b016760ccd666970b-pi

Network: Co-authorship

Network: Communication

Information

Figure 1.4: The links among Web pages can reveal densely-knit communities and prominent sites. In this case, the network structure of political blogs prior to the 2004 U.S. Presidential election reveals two natural and well-separated clusters [5]. (Image from http://www-personal.umich.edu/ladamic/img/politicalblogs.jpg)

German Rail Network

Protein-Protein Interaction Networks:

Nodes: Proteins Edges: 'physical' interactoins

Human brain has between 10-100 billion neurons

o Something in common

- A network that defines the interactions between the components
- Seems random, but display signatures of order and self-organization
- Characteristics
 - Virtual: it is not physically exists
 - Complex: it consists of a large scale number of nodes
 - Grouping: it forms communities due to different interests
 - Dynamic: it's structure is evolving over time

Social Network Analysis

- Methods
- Empirical:
 - Study network data to find organizational principles
- Mathematical models:
 - Probabilistic, graph theory
- o Algorithms
 - $_{\rm \circ}~$ Algorithms for analyzing graphs

Research Questions

- Structure and evolution
 - o What is the structure of a network?
 - $_{\circ}~$ Why and how did it become to have such structure?
- Processes and dynamics
 - Networks provide "skeleton" for spreading of information, behavior, diseases

Targets

- Patterns and statistical properties of network data
- Design principles and models
- Understand why networks are organized the way they are (prediction)

Implications

- Structure of network
 - Connectivity
 - Community
- $_{\odot}~$ Power-law and small-world phenomenon
 - Decentralized search in networks
 - Distributed routing strategies
- Searching the web
 - PageRank
- \circ Epidemics
 - Spreading of disease
 - Information propagation in social networks

Research Work Done by the Lab

- Cuckoo: Scaling Microblogging Services with Divergent Traffic Demands
- GEMSTONE: Empowering Decentralized Social Networking with High Data Availability
- LENS: Leveraging Social Networking and Trust to Prevent Spam Transmission
- Exploring Regional and Global Population Growth in
- Online Social Networks
- Exploring User Social Behaviors in Mobile Social Applications
- Rethinking Routing Information in Mobile Social Networks: Location-based or Social-based?

Modeling Social Networks

Network as a graph

- A network can be represented by a graph mathematically
- Node: an object in the network
- Edge: a link between objects
- Neighbors: nodes connected by edç

Undirected Graph

Facebook friendship network

Directed Graph

- Path: a sequence of interconnected nodes
- Cycle: a path, the first and last nodes are the same, but other nodes are distinct.
- Connectivity:
 - A graph is connected if for every pair of nodes, there is a path between them

o Components

- If a graph is not connected, it breaks apart into several connected subgraphs
- A connected component is a subset of the nodes such that

 (i) every node in the subset has a path to every other; and (ii) the subset is not part of some larger set with the property that every node can reach every other

Figure 2.6: The collaboration graph of the biological research center *Structural Genomics of Pathogenic Protozoa (SGPP)* [134], which consists of three distinct connected components. This graph was part of a comparative study of the collaboration patterns graphs of nine research centers supported by NIH's Protein Structure Initiative; SGPP was an intermediate case between centers whose collaboration graph was connected and those for which it was fragmented into many small components.

Example: Giant Component

- Is the global friendship network connected?
 - Not necessary, some node maybe have no friend
 - Large complex networks often have a giant component, a connected component that contains a significant fraction of all the nodes
 - o Why only one?
 - If there are two, it requires no single link between nodes in the two components, which is unlikely.

Community

- Social network tends to group into clusters due to different interests
- o Communities
 - Sets of nodes with lots of connections inside and few to outside

Community Detection

- How to divide a network into communities?
 - o By observation?
 - Automatically?
- A possible idea
 - Finding the most important edges to divide the network
 - Imagine traffic flows in the network

o Betweenness

The number of shortest paths passing through the edge

 $\begin{array}{c} 1 \\ 1 \\ 2 \\ 3 \\ 3 \\ 7 \\ 49 \\ 8 \\ 12 \\ 14 \end{array}$

Ο

Girvan-Newman Algorithm

- Process
 - 1. Calculate betweenness of each edges
 - $_{\circ}$ 2. remove edges with highest betweenness
 - 3. repeat 1,2 until the number of communities reach to a threshold or no edges are left

Example

The Structure of the Web

- Web as a directed graph
 - Nodes: pages
 - Edges: hyperlinks (directed)
- Question: What does Web look like at a global level?
 - o Giant component?
 - o Small Communities?

Directed Graph

- Path: directional
- Strong connectivity

- A directed graph is strongly connected if there is a path from every node to every other node
- Strongly connected component (SCC)
 - A subset of the nodes that (i) every node in the subset has a path to every other; and (ii) the subset is not part of some larger set with the property that every node can reach every other.

The Bow-Tie Structure of the Web

- 250 million pages, 1.5 billion links (1999)
- A giant SCC (56 million nodes)
- IN set (44 million nodes)
 - Nodes that can reach the giant SCC but cannot be reached from it
- OUT set (44 million nodes)
 - Nodes that can be reached from the giant SCC but cannot reach it
- Tendrils (44 million nodes)
 - The nodes reachable from IN that cannot reach the giant SCC
 - The nodes that can reach OUT but cannot be reached from the giant SCC.
- o Tubes
 - The nodes reachable from IN to OUT
- o Disconnected

Presentation Topics

- The little engine(s) that could: scaling online social networks. SIGCOMM 2010.
 - o http://ccr.sigcomm.org/online/?q=node/642
- 2. An analysis of social network-based Sybil defenses. SIGCOMM 2010.
 - o http://ccr.sigcomm.org/online/?q=node/643
- Search, Chapter 14
 of the book
 - David Easley and Jon Kleinberg, Networks, Crowds, and Markets: Reasoning About a Highly Connected World, Cambridge University Press, 2010.

