Exercise 3

Osamah Barakat

• Please briefly describe the learning process that a switch uses to fill its tables.

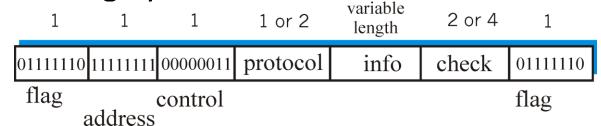
Switch Learning Process

- Observation of traffic
 - When receiving a frame, location of sender is learned
 - Record that information as sender/location pair in switch table
- Forwarding Table: Mapping MAC addresses to ports
 - If it does not know where to forward to, it broadcasts the packet on all ports
 - If it gets an answer on one port, it updates the forwarding table (as when receiving a frame)

MAC address	Interface	TTL
12-34-56-78-9A-BC	1	60
AB-CD-EF-12-34-56	3	40

• What are the differences between a switch and a hub?

Hubs, Switches, Routers...


- Hub:
 - Sort of dump (e.g., no collision analysis)
 - operates as broadcaster
 - host NICs detect collisions
- Switch: Layer 2 device
 - Connects hosts inside one broadcasting domain
 - uses CSMA/CD for collision detection
 - learning process via switch tables (see slide before)

• What are the differences between a switch and a router?

- both store-and-forward devices
 - routers: network layer devices (examine network layer headers)
 - switches are link layer devices
- routers maintain routing tables, implement routing algorithms
 not plug and play, but more sophisticated
- switches maintain switch tables, implement filtering, learning algorithms - plug and play, fast

• What is the byte stuffing in PPP protocol?

- "data transparency" requirement: data field must be allowed to include flag pattern <01111110>
 - Q: is received <01111110> data or flag?
 - Solution: forbid higher layers to use pattern?
 - PPP should be transparent
- Sender: adds ("stuffs") extra < 01111110> byte after each < 01111110> data byte
- Receiver:
 - two 01111110 bytes in a row: discard first byte, continue data reception
 - single 01111110: flag byte

• Please explain the Hidden Terminal Problem

Hidden Terminal Problem

Hidden terminal problem

- B, A hear each other
- B, C hear each other
- □ A, C can not hear each other
- > means A, C unaware of their interference at B

 Consider the IEEE 802.11 MAC Protocol: How does CSMA/CA tackle the problem of collisions (what steps are taken at the sender and receiver respectively)? What is the idea behind the RTS/CTS concept?

CSMA/CA Collision Avoidance

802.11 sender

1 if sense channel idle for **DIFS** then

transmit entire frame (no CD)

2 if sense channel busy then

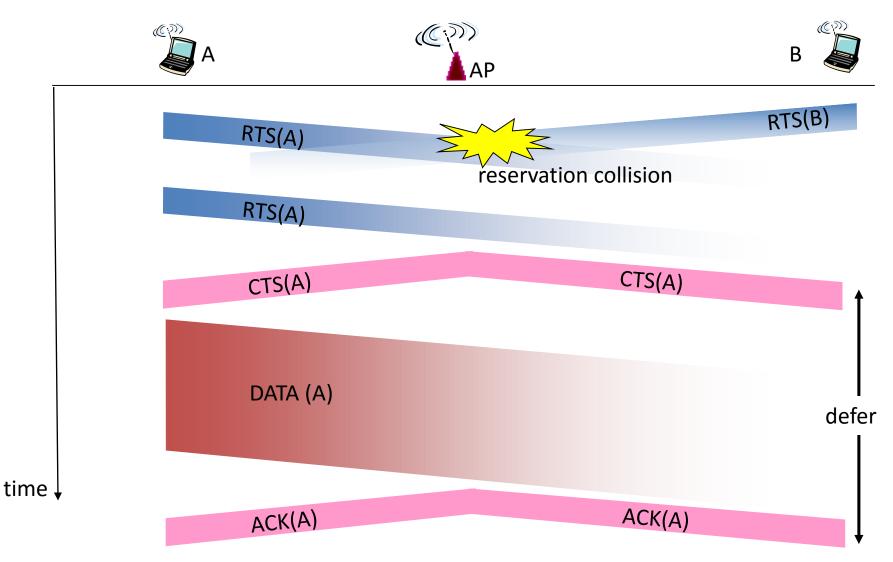
start random backoff time

timer counts down while channel idle

transmit when timer expires

if no ACK, increase random backoff interval, repeat 2

802.11 receiver


- if frame received OK

return ACK after SIFS (ACK needed due to hidden terminal problem)

CSMA/CA RTS/CTS

- Goal: Avoid collsions of large data frames
- Idea:
 - Use reservation of channel instead of random access
 - Allow collisions of reservation packets (small!)
 - Only reservation packets collide, no data frames!
- Solution: Sender transmits Request-To-Send (RTS) to BS, BS broadcasts Clear-To-Send (CTS) as answer (notifies other nodes in range that channel is busy)

Collision Avoidance: RTS-CTS exchange

• What's the main difference between Ethernet protocol and MPLS, ATM protocols?

 signaling protocol needed to set up forwarding in MPLS and ATM as they are virtual circuit switching protocols.