

Advanced Computer Networks Content-Centric Networking (III)

Instructor: Prof. Dr. Xiaoming Fu Presenter: Jiachen Chen Computer Networks Group, Institute of Computer Science Georg-August-Universität Göttingen

- Why COPSS?
 - Temporal separation between providers (publishers) and consumers (subscribers)
 - NDN cannot achieve this via pure query/response model
 - The add-on systems to mitigate the mismatch also introduces overhead

- Why COPSS?
- How does COPSS achieve Content-Centric Pub/Sub? (protocol level)

Content Name:

/ugoe.edu/jchen/acn14-ICN.pdf/_v1/_s1

Content Descriptors:

/networking/ICN /ugoe.edu/acn/2014 /ugoe.edu/jchen

- Why COPSS?
- How does COPSS achieve Content-Centric Pub/Sub? (protocol level)
- What are the 2 new packet types in COPSS?

or Publish

- Why COPSS?
- How does COPSS achieve Content-Centric Pub/Sub? (protocol level)
- What are the 2 new packet types in COPSS?
- What are the data structures in a COPSS forwarding engine? And functions?
 - Forwarding Information Base (FIB)
 - Pending Interest Table (PIT)
 - Subscription Table (ST)
 - Content Store

- Why COPSS?
- How does COPSS achieve Content-Centric Pub/Sub? (protocol level)
- What are the 2 new packet types in COPSS?
- What are the data structures in a COPSS forwarding engine? And functions?

- Why COPSS?
- How does COPSS achieve Content-Centric Pub/Sub? (protocol level)
- What are the 2 new packet types in COPSS?
- What are the data structures in a COPSS forwarding engine? And functions?
- What is Rendezvous-Point (RP) based communication? How to avoid information concentration?

- Why COPSS?
- How does COPSS achieve Content-Centric Pub/Sub? (protocol level)
- What are the 2 new packet types in COPSS?
- What are the data structures in a COPSS forwarding engine? And functions?
- What is Rendezvous-Point (RP) based communication? How to avoid information concentration?
- How to control CD-RP Map size and ST size for scalability?
 - CD-RP lookup like DNS
 - Bloom-Filter ST

- Why COPSS?
- How does COPSS achieve Content-Centric Pub/Sub? (protocol level)
- What are the 2 new packet types in COPSS?
- What are the data structures in a COPSS forwarding engine? And functions?
- What is Rendezvous-Point (RP) based communication? How to avoid information concentration?
- How to control CD-RP Map size and ST size for scalability?
- Why gaming is related to COPSS?
 - Online gaming needs a communication infrastructure
 - Gaming is content-centric
 - Gaming is pub/sub

- Why COPSS?
- How does COPSS achieve Content-Centric Pub/Sub? (protocol level)

- Why COPSS?
- How does COPSS achieve Content-Centric Pub/Sub? (protocol level)
- What are the 2 new packet types in COPSS?
- What are the data structures in a COPSS forwarding engine? And functions?
- What is Rendezvous-Point (RP) based communication? How to avoid information concentration?
- How to control CD-RP Map size and ST size for scalability?
- Why gaming is related to COPSS?
- Hierarchical map partitioning → Hierarchical CD structure?
- Two-step communication?
 - Subscriber interest
 - Policy control

ACN'15 - CONTENT-CENTRIC NETWORKING (III)

HMMM... ICN ROUTING, OLD TALE, NEW DESIGN

- Routing
 - Network as a distributed system
 - Send a packet to a desired destination
- Old tale IP routing
 - Distance Vector Routing RIP [1]
 - Link State Routing OSPF [2]
 - Inter-Domain Routing BGP [3]

- Routing Information Protocol (RIP)
 - Bellman-Ford Algorithm
 - T=o

From A	Via A	Via B	Via C	Via D	From B	Via A	Via B	Via C	Via D
To A					To A	3			
То В		3			То В				
To C			23		To C			2	
To D					To D				
From C	Via A	Via B	Via C	Via D	From D	Via A	Via B	Via C	Via D
From C To A	Via A 23	Via B	Via C	Via D	From D To A	Via A	Via B	Via C	Via D
From C To A To B	Via A 23	Via B	Via C	Via D	From D To A To B	Via A	Via B	Via C	Via D
From C To A To B To C	Via A 23	Via B 2	Via C	Via D	From D To A To B To C	Via A	Via B	Via C	Via D

ACN'15 - CONTENT-CENTRIC NETWORKING (III)

- Routing Information Protocol (RIP)
 - Bellman-Ford Algorithm
 - T=1

From A	Via A	Via B	Via C	Via D	From B	Via A	Via B	Via C	Via D
To A					To A	3		25	
То В		3	25		To B				
To C		5	23		To C	26		2	
To D			28		To D			7	
From C	Via A	Via B	Via C	Via D	From D	Via A	Via B	Via C	Via D
From C To A	Via A 23	Via B 5	Via C	Via D	From D To A	Via A	Via B	Via C 28	Via D
From C To A To B	Via A 23 26	Via B 5 2	Via C	Via D	From D To A To B	Via A	Via B	Via C 28 7	Via D
From C To A To B To C	Via A 23 26	Via B 5 2	Via C	Via D	From D To A To B To C	Via A	Via B	Via C 28 7 5	Via D

- Routing Information Protocol (RIP)
 - Bellman-Ford Algorithm
 - T=2

From A	Via A	Via B	Via C	Via D	From	B Via A	Via B	Via C	Via D
To A					То А	3		7	
То В		3	25		То В				
To C		5	23		To C	8		2	
To D		10	28		To D	31		7	
From C	Via A	Via B	Via C	Via D	From	D Via A	Via B	Via C	Via D
From C To A	Via A 23	Via B 5	Via C	Via D 33	From To A	D Via A	Via B	Via C 10	Via D
From C To A To B	Via A 23 26	Via B 5 2	Via C	Via D 33 12	From To A To B	D Via A	Via B	Via C 10 7	Via D
From C To A To B To C	Via A 23 26	Via B 5 2	Via C	Via D 33 12	From To A To B To C	D Via A	Via B	Via C 10 7 5	Via D

A

23

С

[4]

В

2

5

D

- Routing Information Protocol (RIP)
 - Bellman-Ford Algorithm

 \mathbf{T}

From A	Via A	Via B	Via C	Via D	ł
To A					
То В		3	25		
To C		5	23		
To D		10	28		

From C	Via A	Via B	Via C	Via D
To A	23	5		15
То В	26	2		12
To C				
To D	33	9		5

From B	Via A	Via B	Via C	Via D
To A	3		7	
To B				
To C	8		2	
To D	13		7	

- Routing Information Protocol (RIP)
 - Bellman-Ford Algorithm
 - Issue: count to infinity

From A	Via A	Via B	Via C	Via D	From B	Via A	Via B	Via C
To A					To A	3		7
То В		3	25		То В			
To C		5	23		To C	8		2
To D		10	28		To D	13		7
From C	Via A	Via B	Via C	Via D	From D	Via A	Via B	Via C
From C To A	Via A 23	Via B 5	Via C	Via D 15	From D To A	Via A	Via B	Via C 10
From C To A To B	Via A 23 26	Via B 5 2	Via C	Via D 15 12	From D To A To B	Via A	Via B	Via C 10 7
From C To A To B To C	Via A 23 26	Via B 5 2	Via C	Via D 15 12	From D To A To B To C	Via A	Via B	Via C 10 7 5

ACN'15 - CONTENT-CENTRIC NETWORKING (III)

Via D

LINK STATE ROUTING – OSPF

- Open Shortest Path First (OSPF)
 - Routers exchange information about the links "in the world"
 - Dijkstra algorithm on each router
 - Issues:
 - Storage complexity
 - Computation complexity

ICN: LINK STATE ROUTING – NEW DESIGN

- OSPF-N ^[5]
 - OSPF+Name
 - Data Structures:
 - Name prefix table: name prefix → advertising Router
 - OSPF Routing Table: Destination → Next Hop

SOLVE SCALABILITY ISSUE: AGGREGATION

- A solution suggested by NDN tech report (ISP-based aggregation) ^[7]:
 - Components:
 - Hierarchical provider assigned names (aggregation)
 - A mapping service: user-selected names → provider assigned names
 - E.g.,
 - AT&T assigns names in format: /att/%location%/%user%
 - User Alice chooses name: /aliceblog
 - Mapping service: /aliceblog → /att/atlanta/alice/aliceblog
 - Issue: misplaced data
 - Scalability issue still exists, but shifted from routing to mapping

SOLVE SCALABILITY ISSUE: DISTRIBUTED RESOLUTION

- MobilityFirst Project ^[8,9]:
 - GNRS (Global Name Resolution Service) [10]
 - DNS-like solution
 - DHT-like solution
 - Compare to traditional DNS:
 - Lower update latency (for mobility)
 - Multi-path, Multi-source support

SOLVE SCALABILITY ISSUE: REACTIVE

- Reactive Routing [11, 12, 13]
 - Basic method:
 - Use FIB as cache (similar to DNS)
 - On FIB miss, broadcast Interest
 - When data passes back, write FIB table
 - Efficiency Issue:
 - Broadcast every unknown Interest!
 - Multiple data coming back and discarded on the way
 - Question:
 - Why can't the routers request for new FIB (similar to DNS) on miss?

SOLVE SCALABILITY ISSUE: DISTANCE VECTOR

- Distance-based Content Routing (DCR) [14]:
 - Method:
 - Each router stores distance to nearest anchor
 - Anchors exchange existence
 - Issues:
 - Control overhead
 - Scalability

SOLVE SCALABILITY ISSUE: POTENTIAL BASED

- Cache Aware Target idenTification (CATT) [15]
 - Potential Field
 - Permanent potential field (PPF)
 - Volatile potential field (VPF)
 - Combined potential field (CPF)

ACN'15 - CONTENT-CENTRIC NETWORKING (III)

SOLVE SCALABILITY ISSUE: COOPERATIVE

- Hash-based cooperative ^[16,17]:
 - Idea (similar to P₂P):
 - Data \rightarrow Hash value (MD₅, SHA₁, Prefix-S)
 - Node balancing
 - Node → Hash value (MD5, SHA1, Kleinberg's embedding
 - Topology awareness
 - Store data (or an entry) on corresponding node
 - Issues
 - Longest prefix match?
 - Aggregation?

⊪Russia

INTER-DOMAIN ROUTING – BGP

- Border Gateway Protocol (BGP)
 - To address:
 - Large # of Autonomous Systems (AS)
 - Complicated policy among Ases
 - Provider customer
 - Peering
 - Concept:
 - On border gateway, maintain a table:
 - Address space \rightarrow next hop, preferrence

INTER-DOMAIN ROUTING IN ICN

• Scalable Multi-level Virtual Distributed Hash Table (SMVDHT) ^[18]:

ACN'15 - CONTENT-CENTRIC NETWORKING (III)

References

- 1. C. Hedrick. "*RFC* 1058: *Routing Information Protocol.*" (1988).
- 2. J. Moy. "*RFC 2178: OSPF Version 2.*" (1998).
- 3. Y. Rekhter, Ed., et al. "RFC 4271: A Border Gateway Protocol 4 (BGP-4)." (1998).
- 4. Wikipedia. "Distance-vector routing protocol." https://en.wikipedia.org/wiki/Distance-vector routing protocol
- 5. L. Wang, et al. "OSPFN: An OSPF based routing protocol for Named Data Networking." Tech. Rep (2012).
- 6. A. K. M. Hoque, et al. "Nlsr: Named-data link state routing protocol." ICN, 2013.
- 7. L. Zhang, et al. "Named data networking (ndn) project." Relatório Técnico NDN-0001, (2010).
- 8. "MobilityFirst Future Internet Architecture Project." http://mobilityfirst.winlab.rutgers.edu/
- 9. A. Venkataramani, et al. "MobilityFirst: A mobility-centric and trustworthy internet architecture." SIGCOMM CCR (2014).
- 10. A. Sharma, et al. "A global name service for a highly mobile internetwork." SIGCOMM, 2014.
- 11. H. Dai, et al. "A two-layer intra-domain routing scheme for named data networking." GLOBECOM, 2012.
- 12. H Xie, et al. "Scale content centric networks via reactive routing." ICC, 2013.
- 13. M. Tortelli, et al. "Cobra: Lean intra-domain routing in ndn." CCNC, 2014.
- 14. J.J. Garcia-Luna-Aceves. "Name-based content routing in information centric networks using distance information." ICN, 2014.
- 15. S. Eum, et al. "CATT: potential based routing with content caching for ICN." ICN, 2012.
- 16. L. Saino, et al. "Hash routing schemes for information centric networking." ICN, 2013.
- 17. S Roos, et al. "Enhancing compact routing in CCN with prefix embedding and topology-aware hashing", MobiArch, 2014.
- 18. H Liu, et al. "A Multi-level DHT routing framework with aggregation", ICN, 2012.

