Social Network:
 The Small-World Phenomenon and Decentralized Search

Advanced Computer Networks

Summer Semester 2012

$$
\begin{aligned}
& \left.\mathrm{N}-\mathbf{E}^{\prime} \mathbf{T}^{\prime}()\right) \\
& \mathbf{W}-\mathbf{O R} \text { K-S }
\end{aligned}
$$

Recap: Information Cascading Model

o Consider an urn with 3 marbles. It can be either:

- Majority-blue: 2 blue, 1 red
- Majority-red: 1 blue, 2 red
o Each person wants to best guess whether the urn is majority-blue or majority-red
o Experiment: making decision one by one
o Analysis: Bayes' Rule (posterior probability)

$$
\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A] \cdot \operatorname{Pr}[B \mid A]}{\operatorname{Pr}[B]} .
$$

o Decision: based on the best probability

$$
\operatorname{Pr}[\text { majority }- \text { blue } \mid \text { blue, blue, } r e d]=\frac{2}{3} \geq \frac{1}{2}
$$

Recap: Rich Get Richer Model

o Creation of links among Web pages

- Pages are created in order, and named 1; 2; 3; ...;N.
o When page j is created, it produces a link to an earlier Web page i according to:
- 1) With prob. p $(0<p<1)$, j links to i chosen uniformly at random (from among all earlier nodes)
- 2) With prob. 1-p, node j links to node u with prob. proportional to the degree of u
o Major results: let q=1-p, for degree k, by estimation

$$
\begin{aligned}
& \operatorname{Pr}\{x \geq k\}=\left[\frac{q}{p} \cdot k+1\right]^{-1 / q} \\
& F\{x\}=\operatorname{Pr}\{x<k\}=1-\operatorname{Pr}\{x \geq k\} \\
& \operatorname{Pr}\{x=k\}=F^{\prime}(x)=\frac{1}{p}\left[\frac{q}{p} \cdot k+1\right]^{-(1+1 / q)}
\end{aligned}
$$

Key Network Properties

How to Characterize Networks?

o How many neighbors does a node have?

- Degree distribution
- Power-law for many social networks
o How far apart are nodes in the network?
o Distance (the shortest path)
o Network diameter
- Average path length
o How close a set of nodes connect with each other?
- Community
- Clustering coefficient

Path Length

o Distance: the number of edges along the shortest path connecting the nodes

- If two nodes are disconnected, the distance is infinite
o Diameter: the maximum distance between any pair of nodes in the graph
o Average path length:

Clustering Coefficient

o Evaluate how the neighbors of a node are connected
o For node i with degree k, assume the number of edges between the neighbors of i is e, the clustering coefficient of i is

$$
C_{i}=\frac{e}{k(k-1) / 2}
$$

o Average clustering coefficient

$$
C=\frac{1}{N} \sum_{i}^{N} C_{i}
$$

Key Network Properties

o Degree distribution: $\mathrm{P}(\mathrm{k})$
o Path length: h
o Clustering coefficient: C

Complete Graph

o Degree distribution: $\mathrm{P}(\mathrm{k})=\mathrm{N}-1$
o Path Length:
o Diameter: 1

- Average path length: 1
o Clustering coefficient
- $\mathrm{C}=1$
o Average clustering coefficient: 1

Regular Lattice

o Degree distribution:
o Path length:

$$
P(k)= \begin{cases}1, & k=4 \\ 0, & \text { otherwise }\end{cases}
$$

o Diameter:

$$
h_{\max }=\frac{N}{4}
$$

- Average: for node, its distance to other nodes are:
$1,1,2,2,3,3, \ldots, N / 4, N / 4$.
- So ${ }_{h_{\text {avg }}}=\frac{2 \times(1+2+\cdots+N / 4)}{N / 2}=\frac{2 \frac{(1+N / 4) * N / 4}{2}}{N / 2}=1 / 2+\frac{N}{8}$
o Clustering coefficient $\quad C_{i}=\frac{e}{k(k-1) / 2}$
- $\mathrm{C}=2 * 3 /(4 * 3)=1 / 2$ for $\mathrm{N}>6$
o Summary: constant degree, constant clustering coefficient, but average path is $\mathrm{O}(\mathrm{N})$

Random Graph

o Degree distribution: Binomial distribution

$$
P(k)=\binom{n-1}{k} p^{k}(1-p)^{n-1-k}
$$

o Average path length:
$O(\log n)$
o Clustering coefficient:
$C=p=\bar{k} / n$

The Small-World Phenomenon

Six Degrees of Separation

o What is the typical shortest length between any two people in human society?

- Global measurement is impossible
- Sampling
o Experiment
o Milgram 1967
- Idea: ask randomly chosen "starter" individuals to try to forward a letter to a designated "target" person

Milgram's Experiment [1967]

o Procedure

- The target person
- A stockbroker who worked in Boston and lived in Sharon, Massachusetts
- The starting person
- Randomly picked 300 people in Omaha, Nebraska and Wichita, Kansas
- The target's name, address, occupation, and some personal information are provided
- Rules: "If you do not know the target person on a personal basis, do not try to contact him directly. Instead, mail this folder ... to a personal acquaintance who is more likely than you to know the target person ... it must be someone you know on a first-name basis".
- The names of the person who forward the letter are attached
o How many steps did it take?
o 64 letters reached the target
- It took 6.2 steps on average

o Short paths exist! -- Six Degrees of Separation
o Similar results are verified in other social networks like actor network, email network, who-talks-towhom network (MSN), Facebook ...
- Two facts
- Short paths are there in abundance
- People without global "map" of the network are effective at collectively finding these short paths (How to do decentralized search?)

A Simple Explanation

- Suppose each person knows 100 other people on a first-name basis
- Step 1: reach 100 people
- Step 2: reach 100*100 people
-...
- Step 5: reach $100^{5}=10$ billion people
- Ref: the world population is 7.019 billion (Wiki, 2012)
- The numbers are growing by powers of 100
- But it is not true for real network!!!
- Triadic relationships are common
- Social network is highly clustered, not the kind of massively branching structure.

Regular Network vs Small-World Network vs Random Network

- Regular network: high clustering, high diameter
- Random network: low clustering, low diameter
- Question
- Is there a network inbetween the regular network and random network, with high clustering coefficient and low average path length?
- Small-World network: high clustering, low diameter

The Small-World Model

- Can we make up a simple model that exhibits both of the features: many closed triads, but also very short paths?
- One-deminsional Model (Watts-Strogatz)
- Starting from a ring lattice with n vertices and k edges per vertex.
- Regular network with high clustering coefficient
- We rewire each edge at random with probability $p(0 \leq p \leq 1)$.
- $\mathrm{p}=0$: regular network
- $p=1$: random network
- Randomizing the network, lowering average path length

The Watts-Strogatz Model

o The two-dimensional model: grid
o Two kind of links
o Regular links: Links to the other nodes within a radius of up to r grid steps
o Random: Links to k other remote nodes

o High clustering

$$
C_{i} \geq 2^{* 12 /(8 * 7) \geq 0.43 ~}
$$

o Low diameter: short path exists with high probability

- Since the k remote nodes are random and they barely know each other
- For each step, at lease k new nodes are reached
- The numbers are growing by powers of k
o Still, short path achieves, the diameter is O(logn)

Extension

o Short path still exists even for very small amount of randomness
o For example, instead of allowing each node to have k random friends, we only allow one out of every k nodes to have one random friend
o We can conceptually group k*k subsquares of the grid into "towns"

- It will be similar: each town links to k other towns
o Short path in towns -> short path in people

Small World: Summary

- A network between regular network and random network
- It has high clustering and low diameter
o Clustering efficient: much larger than random network
o Diameter: almost equal to random network
o The Watts Strogatz Model
- Introducing a tiny amount of random links is enough to make the world small, with short paths between every pair of nodes.

Decentralized Search

o Question

- In a Small World network, how to find the short path between a pair of nodes?
- Centralized strategy?
- Flooding?
- Milgram experiment: people collectively find short paths to the designated target -> decentralized search is possible

Decentralized Search

o Node s sending a message to destination t
o s only knows locations of its friends and locations of the target t

- s only has local information, it does not know links of other nodes
o Principle: s send the message to its friend who is the closest to t
o Search path length: the number of steps to reach t

A General Network Model

o One dimension: A ring
o Two dimension: A grid
o Each node has only one long link $\circ \circ \circ$
\circ The probability of a long link from u to v is:

$$
\operatorname{Pr}\{u \rightarrow v\} \sim d(u, v)^{-q}
$$

o Where $d(u, v)$ is the distance (grid steps) between node u and v, and q is a parameter

Choosing the parameter q

$$
\operatorname{Pr}\{u \rightarrow v\} \sim d(u, v)^{-q}
$$

o Different q yields different networks, which have different shortest path lengths
o $q=0$: equals to the Watts-Strogatz model
o q-> $+\infty$: only links to nearby nodes

,oo rainoin!
Not random enough!

What is the best value of q ?

o Is there a value of q, making the search path achieves the shortest?
o Experiment on a two-dimensional grid

- $q \approx 2$

Inverse-Square Principle

o For a two-dimensional grid, the exponent $q=2$ makes it best for decentralized search

$$
\operatorname{Pr}\{u \rightarrow v\} \sim d(u, v)^{-2}
$$

o Guess: for d-dimensional, q=d!
o Rough explanation

- The total number of nodes in an area is proportional to d^{2}
- The probability for v linking to the nodes is proportional to d^{-2}
o They cancel out -> making the probability from v to any other node in the area is independent of d

Analysis the Model in 1-dimension

- Nodes are arranged in a ring.
o For 1 dimension, $\mathrm{p}=1$ is the best $\operatorname{Pr}\{u \rightarrow v\} \sim d(u, v)^{-1}$
o Each node knows only local information, pertorming decentralized search
- Search strategy: Myopic search
- When a node v is holding the message, it passes it to the contact that lies as close to t on the ring as possible
- Not guarantee to be shortest path
o Question: what is the expected length of search path?

o Claim: for $\mathrm{q}=1$ in 1-dimensional model, we can get from s to t in $\mathrm{O}\left(\log (\mathrm{n})^{2}\right)$ steps.
o Proof:
o Normalization: $\operatorname{Pr}\{u \rightarrow v\} \sim d(u, v)^{-1}$
- Let $Z=\sum_{i \neq u} d(u, i)^{-1}$
- The probability of linking from node u to v is:

$$
\operatorname{Pr}\{u \rightarrow v\}=\frac{d(u, v)^{-1}}{Z}
$$

(b) A ring augmented with random longrange links.
o Since

$$
Z=\sum_{i \neq u} d(u, i)^{-1}
$$

(b) A ring augmented with random long-

$$
Z \leq 2\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots+\frac{1}{n / 2}\right)
$$

$$
1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots+\frac{1}{k} \leq 1+\int_{1}^{k} \frac{1}{x} d x=1+\ln k
$$

o We have

$$
Z \leq 2(1+\ln (n / 2))=2 \ln (n)
$$

o For a node v, assume its distance to destination t is d , when will the message enters $\mathrm{d} / 2$ of t ?
o Let $\mathrm{I}=$ "the set of nodes with $\mathrm{d} / 2$ of t "

- The number of nodes in I is d+1

$$
\begin{array}{r}
\operatorname{Pr}\{v \text { points to } I\}=\sum_{j \in I} \operatorname{Pr}\{v \rightarrow j\}=\sum_{j \in I} \frac{d(v, j)^{-1}}{Z} \\
=\frac{1}{Z} \sum_{j \in I} \frac{1}{d(v, j)} \geq \frac{1}{Z}(d+1) \frac{1}{d(v, x)} \geq \frac{1}{Z} d \frac{2}{3 d} \geq \frac{2}{3 Z}
\end{array}
$$

o Since $\quad Z \leq 2 \ln (n)$
o We have

$$
\operatorname{Pr}\{v \text { points to } I\} \geq \frac{1}{3 \ln (n)}
$$

o We have
$\operatorname{Pr}\{v$ points to $I\} \geq \frac{1}{3 \ln (n)}=O\left(\frac{1}{\ln (n)}\right)$

- It means within $\mathrm{O}(\ln (\mathrm{n}))$ steps, we can get into I from v (the distance is halved!)
- Distance can be halved at most $\log _{2}(\mathrm{n})$ times, so the expected time from s to t is

$$
\mathrm{O}\left(\ln (n) \cdot \log _{2}(n)\right)=\mathbf{O}\left(\log (\boldsymbol{n})^{2}\right)
$$

Summary

- In 1-dimenstional ring structure
- Each node knows only local information, performing decentralized search
- Search strategy: Myopic search
- p=1 achieves the shortest search path length
- Expected search path: $\mathbf{O}\left(\log (n)^{2}\right)$
- Compare with P2P searching?
o Chord
- Each node has a FingerTable with $\log (\underline{\square})$ links
- The search path length is $\mathrm{O}(\log (\mathrm{n}))$.

Analysis in Two Dimensions

- For 2-dimensional grid, q=2 achieves the best for decentralized searching
o For n-dimensional, should be q=n.
o Analysis is similar to 1-demensional case
- Normalization: z is still $\mathrm{O}(\ln (\mathrm{n})) \quad Z=\sum_{i \neq u} d(u, i)^{-2}$
- The number of nodes within $\mathrm{d} / 2$ of the target is $\mathrm{O}\left(\mathrm{d}^{2}\right)$
- The probability v link to one node in I is $O\left(1 / d^{2} Z\right)$
- The probability of halving the distance is: $O\left(d^{2}\right) * O\left(1 / d^{2} Z\right)=O(1 / Z)$ (d is canceled out!)
- Similar, for n-dimensional, letting $q=n$ will cancel out d
- The expected steps to halve the distance is $O(Z)=O(\ln (n))$
- The total expected steps from s to t is: $\log _{2} \mathrm{n}^{*} \mathrm{O}(\ln (\mathrm{n}))=\mathrm{O}\left(\log (\mathrm{n})^{2}\right)$
$\substack{\begin{subarray}{c}{c \in e r v o \\ w o R k s} }} \end{subarray}$ This is called Inverse-Square Principle $\operatorname{Pr}\{u \rightarrow v\} \sim d(u, v)^{-2}$

