
Software-defined Networking I

Advanced Computer Networks

Summer Semester 2017



The status of networks today

o Today, routers implement a lot of 

functionality

o They forward packets (data plane)

o And run the control plane software (routing 

algorithms etc.)



Data Plane? Control Plane?

o Data plane

o The actual forwarding actions

o Receiving a packet on an input port, looking up 

output port, forwarding packet via output port



Data Plane? Control Plane?

o Data plane

o The actual forwarding actions

o Receiving a packet on an input port, looking up 

output port, forwarding packet via output port

o Control plane

o Defines what the data plane does

o Installs instructions into data plane devices (e.g., 

installs forwarding rules)

o Example: routing protocols, traffic engineering



Problems with Networks today

o Many different control plane mechanisms

o Designed from scratch for specific goal

o Variety of implementations

o Globally distributed: routing algorithms

o Manual/scripted configuration: ACLs, VLANs

o Centralized computation: Traffic engineering

o Network control plane is a complicated 

mess!



The Problem in Computer Networks

o Complexity has increased to 

“unmanageable” levels

o Consider datacenters:

o 100,000s machines, 10,000s switches

o 1000s of customers

• Each with their own logical networks: ACLs, VLANs, 

etc

o Way beyond what we can handle

o Leads to brittle, ossified configurations

o Inefficient as well



Example: Datacenter Networks



Problems with Networks today 

o Closed equipment

o Software bundled with hardware

o Vendor-specific interfaces

o Over specified

o Slow protocol standardization

o Few people can innovate

o Equipment vendors write the code

o Long delays to introduce new features

8



Software-defined Networking in one 

Slide

o SDN networks break up with this concept

o Data plane implemented by switches

• Switches act on local forwarding state

o Control plane implemented by controllers

• All forwarding state computed by SDN platform

o Open protocols!

o A technical change with broad 

implications



SDN: Control and Data Plane 

Separation

logic for controlling the forwarding elements

routing protocols (e.g., BGP, OSPF), middlebox configuration, etc.

forward data based on rules set by the control logic

IP forwarding, layer 2 switching, etc.

Control Plane

Data Plane



Software-defined Networking (SDN)?

“Many solution providers 
believe 2015 is the year that 
SDN will truly begin to reshape 
the networking landscape” 
– crn.com 

„Software-Defined Networks – the 
counter model of the internet“
– heise.de

“November 2014: Cisco declares “game 
over” for SDN competitors […], prompting 
reaction from two industry groups that 
the game has just begun; Alcatel-
Lucent and Juniper also virtualize their 
routers […]; AT&T and others unveil […] an 
alternative […].”
– networkworld.com



“The physical separation of the network control 
plane from the forwarding plane, and where a 
control plane controls several devices.”
– The Open Networking Foundation

What is SDN?

* Google, Facebook, Microsoft, Deutsche Telekom, Verizon, Yahoo, Cisco, Citrix, 
Dell, Ericsson, HP, IBM, Juniper Networks, NEC, Netgear, VMWare, …
…and various institutions from academia (e.g., Stanford, Berkeley)



SDN in one Slide

Taken from: http://www.opennetsummit.org/archives/apr12/site/why.html

“The physical separation of the 
network control plane from the 
forwarding plane, and where a 
control plane controls several 
devices.”
– The ONF

“The physical separation of the 
network control plane from the 
forwarding plane, and where a 
control plane controls several 
devices.”
– The ONF



Another View

h
tt
p

:/
/w

w
w

.n
e

tw
o

rk
c
o

m
p

u
ti

n
g

.c
o

m
/n

e
tw

o
rk

in
g

/s
e

a
rc

h
in

g
-f

o
r-

a
n

-s
d

n
-

d
e

fi
n
it
io

n
-w

h
a

t-
is

-s
o

ft
w

a
re

-d
e

fi
n
e

d
-n

e
tw

o
rk

in
g

/



Anology

o You are lost in a city and are trying to reach 

a destination

o Todays networks: ask other people you 

meet to obtain information (routing 

protocols)

o SDN: pull out your cellphone and start 

Google maps – it will calculate the route for 

you



Changes

o Less vendor lock-in

o Can buy HW/SW from different vendors

o Changes are easier

o Can test components separately

• HW has to forward

• Can simulate controller

• Can do verification on logical policy

o Can change topology and policy independently



Practical Challenges

o Scalability

o Control elements responsible for many routers

o Response time

o Delays between control elements and routers

o Reliability

o Surviving failures of control elements and routers

o Consistency

o Ensuring multiple control elements behave consistently

o Security

o Network vulnerable to attacks on control elements

o Interoperability

o Legacy routers and neighboring domains



Example - Scalability

o Take routing: the controller has to make 

routing decisions for a lot of routers

o Potentially 1000s

o Also has to store these routes

o a lot of routing tables

o Single controller node for this task?

o Compare with current standard OSPF: 

distributed



Current Status of SDN

o SDN widely accepted as “future of 

networking”

o ~1000 engineers at latest Open Networking 

Summit

o Acceptance in both industry and academia

o Insane level of SDN hype, and still:

o SDN doesn’t work miracles, merely makes things 

easier



Current Status of SDN

o Most innovations in southbound interface, 

controllers, northbound interface, and 

applications

o OpenFlow (as ONE example of the sb interface)

o NOX, POX, ONOS, etc.

o Pyretic, Frenetic, etc.

o But: also changes in network devices

o Most global players offer SDN switches now



Up Next



Partly based on slides of Nick McKeown, 
Scott Shenker, Nick Feamster, and 

Jennifer Rexford



OpenFlow

OpenFlow is one implementation of the Southbound 

interface in SDN

Standardized by the ONF

OpenFlow is NOT SDN

OpenFlow is NOT THE ONLY Southbound interface

(see, e.g., Cisco OpFlex)



Components of an OpenFlow

Network

o Controller

o OpenFlow protocol messages 

o Controlled channel

o Processing

• Pipeline Processing

• Packet Matching

• Instructions & Action Set

o OpenFlow switch

o Secure Channel (SC)

o Flow Table

• Flow entry



OpenFlow

o Communication between the controller and

the network devices (i.e., switches)

From the specification by the Open Networking Foundation: 

https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-

specifications/openflow/openflow-spec-v1.4.0.pdf (Oct 2013)



OpenFlow – Components

o Main components: Flow and Group Tables

o Controller can manipulate these tables via the

OpenFlow protocol (add, update, delete)

o Flow Table: reactively or proactively defines how

incoming packets are forwarded

o Group Table: additional processing



OpenFlow – Switches

o Two different versions of an OpenFlow Switch

o OF-only (packets can only be processed by OF 

tables) and OF-hybrid (allow optional normal 

Ethernet handling (see CN lecture))

o OF-only: all packets go through a pipeline

o Each pipeline contains one or multiple flow tables

with each containing one or multiple flow entries



OpenFlow – Switches

o Incoming packets are matched against Table 

0 first

o Find highest priority match and execute

instructions (might be a Goto-Table 

instruction)

o Goto: Only possible forward



OpenFlow – Switches

o Flow Table entry structure:

o Match fields: where matching applies

o Priority: matching precedence of flow

entry

o Counters: update on packet match with

entry

o Instructions: what to do with the packet

o Timeout: max idle time of flow before

ending



OpenFlow – Switches

o Flow Table entry structure:

o Match fields: where matching applies (i.e., 

ingress port, packet (IP, eth) headers, etc.)

o A flow entry with all match fields as wildcard

and priority 0: table miss entry



OpenFlow – Switches

o If no match in table: table miss

o Handling: depends on table configuration –

might be drop packet, forward to other table, 

forward to controller

o Forward to controller allows to set up a flow

entry (i.e., at the beginning of a flow)



Examples
Switching

*

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport

Action

* 00:1f:.. * * * * * * * port6

Flow Switching

port3

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport

Action

00:20.. 00:1f.. 0800 vlan1 1.2.3.4 5.6.7.8 4 17264 80 port6

Firewall

*

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport

Action

* * * * * * * * 22 drop

32



Examples
Routing

*

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport

Action

* * * * * 5.6.7.8 * * * port6

VLAN Switching

*

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport

Action

* * vlan1 * * * * *
port6, 
port7,
port9

00:1f..

33



OpenFlow - Matching



OpenFlow – Switches

o Group Table entry structure:

o Group Identifier: 32-bit ID to uniquely define

group on the switch (locally)

o Group Type: indirect/all/fast failover/select

o Specifies which action bucket is executed

o Counters: update on packet processed

o Action Buckets: ordered list of buckets, 

each containing a set of instructions



OpenFlow – Switches

o Group Table entry structure:

o Group Tables allow for more complex

forwarding

o E.g., multicast: use all group type to execute all 

action buckets (packet will be cloned for each

bucket, and then forwarded through the instruction

set)



OpenFlow – OpenFlow Channel

o Different message types
available:
o Controller-to-Switch, Asynchronous

or Symmetric

o Controller-to-Switch:
o Lets the controller control the switch

o E.g., Modify-State command to

manipulate flow tables

o Asynchronous:
o Switch-to-controller requests

(e.g., at table miss)

o Symmetric:
o May be sent from both ends (e.g., 

echo command)



OpenFlow – More features

o Tools for traffic management

o Meter tables for flows

o Allow for traffic shaping

o Tools for traffic monitoring

o Statistics can be gathered from switches

o Details out of scope of this lecture



OpenFlow - Example



OpenFlow - Example

SRC: H2

DST: H4



OpenFlow - Example

SRC: H2

DST: H4 ?



OpenFlow - Example

SRC: H2

DST: H4
Packet-IN



OpenFlow - Example

SRC: H2

DST: H4
Packet-OUT

Action: eth2



OpenFlow - Example

SRC: H2

DST: H4



OpenFlow - Example

SRC: H2

DST: H4



OpenFlow - Example

SRC: H2

DST: H4 ?



OpenFlow - Example

SRC: H2

DST: H4 !



OpenFlow - Example

SRC: H2

DST: H4



OpenFlow Controllers



OpenFlow Controllers

…and many more: Beacon, Trema, OpenContrail, POF, etc.



That‘s a Lot of Controllers!?

Which controller should I use for what

problem?

„There are almost as many controllers for
SDNs as there are SDNs“ – Nick Feamster



Which controller?

Concept?

Architecture?

Programming language and model?

Advantages / Disadvantages?

Learning Curve?

Developing Community?

Type of target network?



NOX [1]

o The first controller

o Open source

o Stable

• NOX-Classic: C++/Python 

• „New“ NOX: C++ only

– OF version supported: 1.0

[1] Gude et al. "NOX: towards an operating system for networks." ACM SIGCOMM CCR 38.3 (2008): 105-110.



NOX Architecture

switches and

attached servers

Controller 

maintains a 

network view

OpenFlow is used

to control switches

Granularity of

Control: Per Flow

[1] Gude et al. "NOX: towards an operating system for networks." ACM SIGCOMM CCR 38.3 (2008): 105-110.



NOX Architecture

Programming model: Controller listens for

OF events

Programmer writes action handlers for

events



When to use NOX

o Need to use low-level semantics of OpenFlow

o NOX does not come with many abstractions

o Need of good performance (C++)

o E.g.: production networks



POX [1]

o POX = NOX in Python

o Advantages:

o Widely used, maintained and supported

o Relatively easy to write code for

o Disadvantage:

o Performance (Python is slower than C++)

o But: can feed POX ideas back to NOX for

production use

[1] Mccauley, J. "Pox: A python-based openflow controller.“ http://www.noxrepo.org/pox/about-pox/



POX

0 20.000 40.000 60.000

NOX-C++

NOX-Python

POX

cbench "throughput" (flows per 
second)

0 40.000 80.000

NOX-C++

NOX-Python

POX

cbench “latency” (flows per 
second)

http://www.noxrepo.org/pox/about-pox/



When to use POX

o Learning, testing, debugging, evaluation

o Probably not in large production networks



Just one more: Floodlight [1]

o Java

o Advantages:

o Documentation, 

o REST API conformity

o Production-level performance

o Disadvantage:

o Steep learning curve

[1] http://www.projectfloodlight.org/floodlight/



Floodlight: Users

Floodlight Adopters:
• University research
• Networking vendors
• Users
• Developers / startups



Floodlight Overview

o Floodlight is a collection of 

modules 

o Some modules (not all) export 

services

o All modules in Java

o Rich, extensible REST API

DeviceManager
(IDeviceService)

FloodlightProvider
(IFloodlightProviderService)

TopologyManager
(ITopologyManagerService)

RestServer
(IRestApiService)

StorageSource
(IStorageSourceService)

Forwarding

StaticFlowPusher
(IStaticFlowPusherService)

LinkDiscovery
(ILinkDiscoveryService)

VirtualNetworkFilter
(IVirtualNetworkFilterService)

Taken from: Cohen et al, “Software-Defined Networking and the Floodlight 

Controller”, available at http://de.slideshare.net/openflowhub/floodlight-

overview-13938216



Floodlight Overview

DeviceManager
(IDeviceService)

FloodlightProvider
(IFloodlightProviderService)

TopologyManager
(ITopologyManagerService)

RestServer
(IRestApiService)

StorageSource
(IStorageSourceService)

Forwarding

StaticFlowPusher
(IStaticFlowPusherService)

LinkDiscovery
(ILinkDiscoveryService)

DeviceManager
(IDeviceService)

FloodlightProvider
(IFloodlightProviderService)

TopologyManager
(ITopologyManagerService)

RestServer
(IRestApiService)

StorageSource
(IStorageSourceService)

Forwarding

StaticFlowPusher
(IStaticFlowPusherService)

LinkDiscovery
(ILinkDiscoveryService)

VirtualNetworkFilter
(IVirtualNetworkFilterService)

• Computes shortest path using Dijsktra
• Keeps switch to cluster mappings

 Installs flow mods for end-to-end routing

 Handles island routing

 Tracks hosts on the network

 MAC -> switch,port, MAC->IP, IP->MAC

 Implements via Restlets (restlet.org)

 Modules export RestletRoutable

 Supports the insertion and removal of static flows

 REST-based API

 Maintains state of links in network

 Sends out LLDPs

 Create layer 2 domain defined by MAC address

 Translates OF messages to Floodlight events

 Managing connections to switches via Netty

Ta
k
e

n
 f

ro
m

: 
C

o
h
e

n
 e

t 
a

l, 
“S

o
ft
w

a
re

-D
e

fi
n
e

d
 N

e
tw

o
rk

in
g

 a
n
d

 t
h
e

 F
lo

o
d

lig
h
t 

C
o

n
tr

o
lle

r”
, 

a
va

ila
b

le
 a

t 
h
tt
p

:/
/d

e
.s

lid
e

s
h
a

re
.n

e
t/
o

p
e

n
fl
o

w
h

u
b

/f
lo

o
d

lig
h

t-

o
ve

rv
ie

w
-1

3
9

3
8

2
1

6



Floodlight Programming Model

Switch

Switch 

vSwitch

IFloodlight-
Module

External 
Application

IFloodlightModule

 Java module that runs as part of Floodlight

 Consumes services and events exported by other modules

 OpenFlow (ie. Packet-in)

 Switch add / remove

 Device add /remove / move

 Link discovery

External Application

 Communicates with Floodlight via REST

Floodlight Controller

Switch 

Taken from: Cohen et al, “Software-Defined Networking and the Floodlight 

Controller”, available at http://de.slideshare.net/openflowhub/floodlight-

overview-13938216



Floodlight Modules
Network State

List Hosts

List Links

List Switches

GetStats (DPID)

GetCounters

(OFType…)

Static Flows

Add Flow

Delete Flow

List Flows

RemoveAll Flows

Virtual Network

Create Network

Delete Network

Add Host

Remove Host

User Extensions

…

Floodlight Controller

Switch

Switch 

vSwitch

Switch

Ta
k
e

n
 f

ro
m

: 
C

o
h
e

n
 e

t 
a

l, 
“S

o
ft
w

a
re

-D
e

fi
n
e

d
 N

e
tw

o
rk

in
g

 a
n
d

 t
h
e

 F
lo

o
d

lig
h
t 

C
o

n
tr

o
lle

r”
, 

a
va

ila
b

le
 a

t 
h
tt
p

:/
/d

e
.s

lid
e

s
h
a

re
.n

e
t/
o

p
e

n
fl
o

w
h

u
b

/f
lo

o
d

lig
h

t-

o
ve

rv
ie

w
-1

3
9

3
8

2
1

6



When to use Floodlight

o If you know JAVA

o If you need production-level performance

o Have/want to use REST API



Network Virtualization with 

OpenFlow



Virtualizing OpenFlow

o Network operators “Delegate” control of 

subsets of network hardware and/or traffic to 

other network operators or users

o Multiple controllers can talk to the same set of 

switches

o Imagine a hypervisor for network equipments

o Allow experiments to be run on the network in 

isolation of each other and production traffic



Virtualizing OpenFlow

https://gallery.technet.microsoft.com/scriptcenter/Simple-Hyper-V-Network-

d3efb3b8



Virtualization: VLANs

Normal L2/L3 Processing
Production VLANs

Research VLAN 1

Research VLAN 2



Example: Datacenter Networks



FlowVisor [1]

o A network hypervisor developed by Stanford

o A software proxy between the forwarding and 

control planes of network devices

[1
] 

S
h
e

rw
o

o
d

, 
e

t 
a

l. 
"F

lo
w

v
is

o
r:

 A
 n

e
tw

o
rk

 v
ir

tu
a

li
za

ti
o

n
 l
a

y
e

r.
"

O
p

e
n

F
lo

w
S

w
it
c
h

 C
o

n
s
o

rt
iu

m
, T

e
c
h

. 
R

e
p

(2
0

0
9

).



OpenFlow
Protocol

OpenFlow
FlowVisor & Policy Control

Broadcast
Multicast

OpenFlow
Protocol

http
Load-balancer

FlowVisor-based Virtualization

OpenFlow 

Switch

OpenFlow 

Switch

OpenFlow 

Switch

Separation not only
by VLANs, but any

L1-L4 pattern

dl_dst=FFFFFFFFFFFF tp_src=80, or

tp_dst=80



Slicing Policies

o The policy specifies resource limits for each slice:

– Link bandwidth

– Maximum number of forwarding rules

– Topology

– Fraction of switch/router CPU

– FlowSpace: which packets does the slice 

control?



FlowVisor Resource Limits

o FV assigns hardware resources to “Slices”

o Topology

• Network Device or Openflow Instance (DPID)

• Physical Ports

o Bandwidth

• Each slice can be assigned a per port queue with a fraction 

of the total bandwidth



FlowVisor Resource Limits 

(cont.)

o FV assigns hardware resources to “Slices”

o CPU

• Employs Course Rate Limiting techniques to keep new flow 

events from one slice from overrunning the CPU

o Forwarding Tables

• Each slice has a finite quota of forwarding rules per device



FlowVisor FlowSpace

o FlowSpace is defined by a collection of packet 

headers and assigned to “Slices”

o Source/Destination MAC address

o VLAN ID

o Ethertype

o IP protocol

o Source/Destination IP address

o ToS/DSCP

o Source/Destination port number



Use Case: VLAN Partitioning

• Basic Idea: Partition Flows based on Ports and VLAN 
Tags
• Traffic entering system (e.g. from end hosts) is tagged
• VLAN tags consistent throughout substrate

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport

* * * * 1,2,3 * * * * *

* * * * 7,8,9 * * * * *

* * * * 4,5,6 * * * * *

Dave

Larry

Steve



Use Case: CDN
• Basic Idea: Build a CDN where you control the entire 

network
• All traffic to or from CDN IP space controlled by Experimenter

• All other traffic controlled by default routing

• Topology is the entire network

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport

* * * * * 84.65.* * * * *

* * * * * * 84.65.* * * *

* * * * * * * * * *

From CDN
To CDN

Default



FlowSpace: Maps Packets to 

Slices

Taken from: Rob Sherwood’s presentation at ONS:

http://www.opennetsummit.org/archives/apr12/sherwood-mon-flowvisor.pdf



FlowVisor Slicing Policy

o FlowVisor intercepts OpenFlow messages 

from devices 

o Send control plane messages to the slice 

controller only if source is in slice topology.

o Rewrite OpenFlow feature negotiation messages 

so the slice controller only sees the ports in it’s 

slice

o Port up/down messages are pruned and only 

forwarded to affected slices



FlowVisor Slicing Policy

o FlowVisor intercepts OpenFlow messages from 

controllers

o Rewrites flow insertion, deletion & modification rules 

so they don’t violate the slice definition

• Flow definition – ex. Limit Control to HTTP traffic only

• Actions – ex. Limit forwarding to only ports in the slice



FlowVisor Slicing Policy

o FlowVisor intercepts OpenFlow messages from 

controllers

o Expand Flow rules into multiple rules to fit policy

• Flow definition – ex. If there is a policy for John’s HTTP traffic 

and another for Uwe’s HTTP traffic, FV would expand a 

single rule intended to control all HTTP traffic into 2 rules.

• Actions – ex. Rule action is send out all ports. FV will create 

one rule for each port in the slice.

• Returns “action is invalid” error if trying to control a port 

outside of the



FlowVisor Message Handling

OpenFlow
Firmware

Data Path

Alice
Controller

Bob
Controller

Cathy
Controller

FlowVisor

OpenFlow

OpenFlow

Packet

Exception

Policy Check:
Is this rule 
allowed?

Policy Check:
Who controls 
this packet?

Full Line Rate
Forwarding

Rule

Packet

Ta
k
e

n
 f

ro
m

: 
R

o
b

 S
h
e

rw
o

o
d

’s
 p

re
s
e

n
ta

ti
o

n
 a

t 
O

N
S

:

h
tt
p

:/
/w

w
w

.o
p

e
n
n
e

ts
u
m

m
it

.o
rg

/a
rc

h
iv

e
s
/a

p
r1

2
/s

h
e

rw
o

o
d

-m
o

n
-f

lo
w

vi
s
o

r.
p

d
f



FlowVisor Message Handling

OpenFlow
Firmware

Data Path

Alice
Controller

Bob
Controller

Cathy
Controller

FlowVisor

OpenFlow

OpenFlow

Packet

Exception

Policy Check:
Is this rule 
allowed?

Policy Check:
Who controls 
this packet?

Rule

Error

Ta
k
e

n
 f

ro
m

: 
R

o
b

 S
h
e

rw
o

o
d

’s
 p

re
s
e

n
ta

ti
o

n
 a

t 
O

N
S

:

h
tt
p

:/
/w

w
w

.o
p

e
n
n
e

ts
u
m

m
it

.o
rg

/a
rc

h
iv

e
s
/a

p
r1

2
/s

h
e

rw
o

o
d

-m
o

n
-f

lo
w

vi
s
o

r.
p

d
f



FlowVisor Limitations & Outlook

o Controllers can only act on disjoint sets of traffic

o Solution to this and more advanced concepts 

handled in dedicated SDN course

o Next week: Programmability of OpenFlow; 

Northbound interface


