Machine Learning and Pervasive Computing (Summer 2015): Difference between revisions

From NET Wiki
Jump to navigation Jump to search
Line 35: Line 35:
** [[Media:MLnotes_01.pdf | Lecture notes (Introduction) (pdf)]]
** [[Media:MLnotes_01.pdf | Lecture notes (Introduction) (pdf)]]
* Monday, '''April 20th, 2015, 08.15 - 09.45''': Lecture 2
* Monday, '''April 20th, 2015, 08.15 - 09.45''': Lecture 2
** [[Media:ML_02.pdf | Rule-based (pdf)]]
* Monday, '''April 27th, 2015, 08.15 - 09.45''': Lecture 3
* Monday, '''April 27th, 2015, 08.15 - 09.45''': Lecture 3
** [[Media:ML_03.pdf | Decision tree (pdf)]]
** [[Media:ML_practical_01.pdf | Projects meeting (Group allocation) (pdf)]]
* Monday, '''May 04th, 2015, 08.15 - 09.45''': Lecture 4
* Monday, '''May 04th, 2015, 08.15 - 09.45''': Lecture 4
** [[Media:ML_04.pdf | Regression (pdf)]]
** [[Media:MLnotes_04.pdf | Lecture notes (Regression) (pdf)]]
* Monday, '''May 11th, 2015, 08.15 - 09.45''': No lecture
* Monday, '''May 11th, 2015, 08.15 - 09.45''': No lecture
* Monday, '''May 18th, 2015, 08.15 - 09.45''': Lecture 5
* Monday, '''May 18th, 2015, 08.15 - 09.45''': Lecture 5

Revision as of 09:32, 4 May 2015

Details

Workload/ECTS Credits: 180h, 5 ECTS
Module: M.Inf.1223: Spezielle fortgeschrittene Aspekte der Computernetzwerke; ITIS: 3.33
Lecturer: Stephan Sigg
Teaching assistant: --
Time: Mondays, 08.15 - 09.45.; Exercise: (bi-weekly)
Place: IfI 3.101
UniVZ [1]


Course Overview

The course will give a comprehensive overview on Machine learning with applications in Pervasive Computing.

  • Course topics
    • Introduction to Machine learning
    • Features and feature extraction
    • Feature subset selection
    • Performance metrics
    • Rule-based learning
    • Regression approaches
    • High dimensional data
    • Artificial Neural Network learning
    • Probabilistic approaches
    • Topic models
    • nearest neighbour methods
    • Unsupervised learning and Clustering
    • Anomaly detection
    • Recommender systems

Schedule

Requirements

  • Active participation in the exercises required.

Reading List