Seminar on Internet Technologies (Summer 2021)

From NET Wiki
Revision as of 15:21, 2 February 2021 by Yuan4 (talk | contribs) (→‎Details)
Jump to navigation Jump to search

Details

Workload/ECTS Credits: 5 ECTS (BSc/MSc AI); 5 (ITIS)
Lecturer: Prof. Xiaoming Fu
Teaching assistant: Tingting Yuan [tingting.yuan@cs.uni-goettingen.de] and Sripriya Srikant Adhatarao
Time: April 12th. Register on ecampus before April 18th.Please read this introduction slide [1]. If there is any question, please contact teaching assistants.
Place: Through Zoom, waiting link
UniVZ [2]


Announcement

Due to the recent situations in the context of Covid-19, new information will be updated here in time, please check this webpage periodically to get the newest information.

Course description

This course covers selected topics on up-to-date Internet technologies and research. Each student chooses a topic, does a presentation, and writes a report on it. Besides the introduction meeting, there are no regular meetings, lectures, or classes for this course. The purpose of this course is to familiarize the students with new technologies, enable the independent study of a specific topic, and train presentation and writing skills.

The informational meeting at the beginning of the course will cover some guidelines on scientific presenting and writing.

Due to the topic advisors' workload limitation, we could only provide limited topics, and the topic assignment will be on the basis of the first come first serve principle. Please contact the topic advisor directly for the topic availability.

Note: Participants in the seminar only need to register the exam before the end of the course.

Passing requirements

  • There will be 2 milestones before the presentations where the students should pass before they register for the course.
    • Intro milestone where the adviser makes sure that the student starts to work on the topic and follows an accepted methodology.
    • Midterm milestone. (ex. programming tasks are done etc... )
  • Actively and frequently participate in the project communication with the topic advisor
    • This accounts for 20% of your grade.
  • Present the selected topic (20 min. presentation + 10 min. Q&A).
    • This accounts for 40% of your grade.
  • Write a report on the selected topic (12-15 pages) (LaTeX Template:[3]).
    • This accounts for 40% of your grade.
  • Please check the #Schedule and adhere to it.

Schedule

  • 17th Apr. 2021 : Deadline for registration the course
  • 16th Jun. 2021 : Deadline for registration to attend the final presentation
  • 24th Jun. 2021 (14:00-18:00) : Final Presentations online (waiting for the link)
  • 24th Aug. 2021 (23:59) : Deadline for submission of the report (should be sent to the topic adviser!).

Topics

Topic Description Prerequisites Topic Advisor Readings Available
Graph deep reinforcement learning In this topic, you will study how Graph Neural Networks (GNNs) work for Deep Reinforcement Learning. Basic programming knowledge, Basic machine learning knowledge [Tingting Yuan, tingting.yuan@cs.uni-goettingen.de] Yes

Workflow

1. Select a topic

Each student needs to choose a topic from the list. You can start to work on your selected topic at any time. However, please make sure to notify the advisor of your selected topic in advance, because you might be refused by the advisor if someone has registered on the same topic.

2. Get your work advised

Each topic has an advisor, who will help you to solve problems regarding the topic. Please do not hesitate to contact your advisor. It is recommended (and not mandatory) that you can schedule a skype or zoom meeting with your advisor right after you select your topic. Your advisor will give you some useful guidance and suggestions, which will help you to gain more from this course.

3. Approach your topic

  • By choosing a topic, you will get a direction of elaboration.
  • You may work in different styles, for example:
    • Survey: Basic introduction, an overview of the field; general problems, methods, approaches.
    • Specific problem: Detailed introduction, details about the problem, and the solution.
  • Based on the research, you should have your own ideas on your topic.

4. Prepare presentation

  • Present on your topic to the audience (in English).
  • 20 minutes of presentation followed by 10 minutes discussion.

You need to present your topic to an audience of students and other interested people (usually the NET group members). Your presentation should include your general idea of your topic and highlight interesting problems and solutions. You must finish your presentation within a limited time. You have 20 minutes to present your topic followed by 10 minutes of discussion. It is highly recommended to send your slides to your topic advisor in advance, he/she will give you help for your presentation.

Hints for preparing the presentation: If your topic includes many aspects, and 20 minutes is too short for you to introduce them all, it is recommended to focus on one certain important aspect. Besides, you can discuss with your advisor, he/she will help you to reduce the content. Please make sure to finish your presentation in time.

Suggestions for preparing the slides: No more than 20 pages/slides. Get your audiences to quickly understand the general idea. Figures, tables, and animations are better than sentences. Don't forget a summary of the topic and your ideas.

5. Write a report

  • Present the problem with its background.
  • Detail the approaches, techniques, methods to solve the problem.
  • Evaluate and assess those approaches (e.g., pros and cons).
  • Give a short outlook on potential future developments.

The report must be written in English according to common guidelines for scientific papers, between 12 and 15 pages of content (excluding the table of content, bibliography, etc.). Please note that you can not directly copy content from papers or webpages, as this will be considered plagiarism. All quoted images and tables need to indicate their source.

6. Course schedule

There are no regular meetings, lectures or classes for this course. The work is expected to be done by yourself with the assistance of your topic advisor. Please follow the #Schedule to take appropriate actions.