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Outline of Wireless Block

4 . ..
* Game theory and its applications
— Game theory basics and concepts

U Distributed Spectrum Sharing Application

* Social Group Maximization Framework
— Introduction to the framework
— Wireless Network Applications

* Mobile Data Offloading

— Basics and ideas
— Optimized Offloading Decision

Final Exam in this block only covers basic concepts and examples




Introduction to Game Theory



Game Theory

Rational — user aims to optimize its own objective

Interaction — user needs to take others’ decisions into account

(o
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..Game Theory is designed to address situations in which the

outcome of a person’s decision depends not just on how they

choose among several options, but also on the choices made by the

: . , ”
people they are interacting with... --David Easley and Jon Kleinberg

... Game theory is the study of the ways in which strategic

Interactions among rational agents produce outcomes with respect

e ”
to the utilities of those agents .... --Stanford Encyclopedia of Philosophy



A Brief History

1944: Von Neumann and Oskar Morgenstern B

Theory of Games and Economic Behavior O. Morgenstern 1902-1977
Two-player games

* 1950: John Nash
Nash Equilibrium
Equilibrium points in n-player games

von Neumann 1903-1957
e After 1950s: widely used in economics, politics,

biology...

Competition between firms
Auction design

Role of punishment in law enforcement
International policies
Evolution of species | -

John Nash 1928-2015
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Relevance to Networking Research

 Economic issues become increasingly important
— Interactions with/between human users
e.g., data plan pricing, resource allocation
— Independent service providers
e.g., bandwidth trading, peering agreements
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* Tool for system design A COURSE IN

— Distributed algorithms SAME THEORY
— Multi-objective optimization ' Game
. h

— Incentive compatible protocols

MaRTIN J. OSBORMNE
ARIEL RUBINSTEIMN



Game Theory Basics

 Strategic game form (P, S,U)
— Players (P4, ..., Py) : finite number of decision makers

— Strategy sets (Sy, ..., Sy) : player P; has a nonempty set S; of
actions/strategies s;

— Payoff function U;(sq, ..., Sy ) : player’s preference/individual utility

e Pure Nash equilibrium (NE)

— A strategy profile (s3, ..., s}, ..., Sy) is a NE if for each player i
U;(51, ., S;i, -, SN) = Ui (sq, .., Siy » SN), VS; € S
— No player has incentive to deviate (stable system point)

— NE is a fixed point of the best response functions

* * * .
s; = argmax U;(sg, ..., Sj, -, SN) , Vi
S{ES;

* There is no universal rule for finding a Nash equilibrium!



Prisoner’s Dilemma

Two suspects are arrested

The police lack sufficient evidence to convict the suspects,
unless at least one confesses

The police hold the suspects in two separate rooms, and tell
each of them three possible consequences:

— If both deny: 1 month in jail each

— If both confess: 6 months in jail each

— If one confesses and one denies:
» The one confesses: walk away free of charge
» The one denies: serve 12 months in jail



Prisoner’s Dilemma

strategies

Deny
Player 1

Confess

Player 2

Y. Deny Confess

—12, 0

6, 6 ~_

payoffs



Prisoner’s Dilemma

e Strictly dominated strategy

Player i’s strategy s; is strictly dominated by player i’s strategy s; if
Ui(siys—i) > Ui(si, i), Vs_;
where s_; is the strategy profile of all the other players except player i

No matter what other people do, by choosing s; instead of s;, player i
will always obtain a better payoff

Key principle: Never play a strictly dominated strategy
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Prisoner’s Dilemma

Deny
Player 1

&

Player 1’s choice

Player 2’s choice

Player 2
Deny
—1,—1 —12, 0
012 |Cs

NE of
the game

Deny is strictly dominated by Confess!
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Finding Nash Equilibrium

 When there are no strictly dominated strategies, we can not
easily “simplify” the game

* Nash equilibrium is a state of mutual best responses
* Key principle: derive the best responses
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Stag Hunt

Two hunters decide what to hunt independently
Each one can hunt a stag (deer) or a hare
Successful hunt of stag requires cooperation

Successful hunt of hare can be done individually

Simultaneous decisions without prior communications



Stag Hunt

Player 2
Stag Hare
Stag 5,5 0,2
Player 1
Hare 2,0 2,2

There is no strictly dominated strategy
Find out a player’s best response given the other player’s choice
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Stag Hunt

Given Player 2 chooses Stag

\ Player 2

Stag Hare

Player 1's
best response
P . Sta

g J], 5 0,2

Player 1

Hare 2,0 2.2




Stag Hunt

Given Player 2 chooses Hare

Player 2 /

Stag Hare
Stag 5, 5 0,2
Player 1
Hare 2,0 2|, 2
Player 1's /
best response

16



Stag Hunt

Player 2
Stag Hare

Stag @‘\&ZK
Player 1
Hare 2.0 @/

\

Player 2's best responses

NE is a state of mutual best responses




Stag Hunt

* Two Nash equilibria exist

» (Stag, Stag) is payoff dominant
» Both players get the best payoff possible
» Require trust among players to achieve coordination

* (Hare, Hare) is risk dominant
» Minimum risk if player is uncertain of each other’s
choice
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Battle of Sexes

A couple decide where to go during Friday night without
communications

Husband prefers to go and watch football

Wife prefers to go and watch ballet

Both prefer to stay together during the night



Battle of Sexes

Wife
Football Ballet
Football| 4, 2 0,2
Husband
Ballet 0,0 2.4

There is no strictly dominated strategy
Find out a player’s best response given the other player’s choice
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Battle of Sexes

Given Wife chooses Football

\ Wife

Football Ballet

Husband's
best response \

Football 4| 2 0,0

Husband

Ballet 0, 0 2.4
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Battle of Sexes

Football

Husband

Ballet

Husband’s ///
best response

Given Wife chooses Football

Wife /

Football Ballet
4, 2 0,0
0, 0 2\ 4
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Battle of Sexes

Wife
Football Ballet

Football q— 0
\&\ NE of
Ballet | 0. 0

\

Wife's best responses

NE is a state of mutual best responses

Husband
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Cournot Competition

* Prisoner’s dilemma, Stag Hunt, Battle of Sexes are finite
games with finite number of actions for each player

* Cournot competition is a continuous game in which a player
has continuous (infinite) choices
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Cournot Competition
Two firms producing the same kind of product in
quantities of g;and g, respectively
Market clearing price p = A — g1 — q>
Cost of unit production is C for both firms

Profit for firm i
Ji= @ —C)q;

=A—-C—q1—9q2)q;
DefineB=A—-C

Objective of firm i: choose g; to maximize profit

q; = argmax (B — q; — q3)q;
ai
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Cournot Competition

* Firm i’s best response, given its competitor’s q;
q; = (B —q;)/2

* NE (g4, g3) of Cournot competition satisfies
{Q’{ = (B—q3)/2
q2 = (B —q1)/2

 This leads to the NE as
q1 = q; = B/3
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Cournot Competition

* Firm i’s best response, given its competitor’s q;

q; = (B—q;)/2

* NE (g7, g3) of Cournot competition satisfies

B/2

{qi‘ = (B—q3)/2
q; = (B —qq)/2

A q2

i best-response function

9
NE: q,=q,=B/3

\.

fixed-point solution
fo the equations

>
B/2 B
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Summary

Game theory: players, strategies, and payoffs

Nash equilibrium

Strictly dominated strategy

Best response strategy

Finite and infinite(continuous) games



Application in
Distributed Spectrum Sharing



Distributed Spectrum Sharing

@ Spectrum is scarce
» Most spectrums have been exclusively licensed
» More and more wireless devices emerge
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@ Spectrum is under-utilized
» E.g., average spectrum utilization in Chicago is lower than 20%



Distributed Spectrum Sharing

@ Dynamic spectrum access with cognitive radios
» Address spectrum under-utilization problem
» Primary user (PU) — licensed spectrum holder
» Secondary user (SU) — unlicensed spectrum user
» Enable SUs opportunistically share the spectrum with PUs

@D Spectrum in use
(D Dynamic Spectrum Access

Power
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Distributed Spectrum Sharing

@ Achieving efficient distributed spectrum sharing among SUs is
challenging

» Spectrum opportunities change over frequency, time, and space
» Individual SU has limited observations of the entire network

» Multiple simultaneous SUs may generate severe interference

@ SUs are hence required to make intelligent decisions for efficient
spectrum sharing
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Distributed Spectrum Sharing

Key problem: how to share spectrum in an intelligent way?

@ Individual intelligence
» SUs share the spectrum competitively based on strategic
Interactions
» SUs are fully rational (e.g., belong to different authorities)
» Non-cooperative spectrum access games
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Distributed Spectrum Sharing with Spatial Reuse

@ SUs with individual intelligence share the spectrum based on
competition

@ Game theory for modeling competitive spectrum sharing

@ Spatial aspect of competitive spectrum sharing is less understood
» Spatial reuse is a key feature of wireless communication
» Most existing works focus on fully interfering case

@ Spatial spectrum access game for competitive spectrum sharing with

spatial reuse
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System Model

@ M heterogeneous channels
» Channel state S;,,(7) € {0, 1} with an idle probability of 6,
» M ={1.2,..., M} — the set of channels

@ N heterogeneous SUs
» Data rate b7 (7) follows i.i.d random process with mean B/
» N ={1.2..., N} — the set of SUs
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System Model

@ Interference graph G = {N. &}
» N — vertex set
» d, = (d71x,. drx,) — locations of transmitter and receiver of SU n
> & ={(i.J) : l|d1x,dry|| < 6i.Vi,j # i € N'} — interference edge set
» N,=1{i:(i.n) € £, i € N} — interfering SUs of SU n
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System Model

@ Channel contention model
» a = (aj,....an) — channel selections of all SUs
» N27(a) ={i € N, : a; = a,} — interfering SUs choosing the same
channel as SU n
» g,(N7"(a)) — probability that SU n can grab the channel

@ Expected SU throughput

Un(a) = 0.,B3,8n(N;"(a))
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Spatial Spectrum Access Game (SSAG)

@ Each SU with individual intelligence tries to maximize its own

throughput

max U,(ap, a_,),Vn e N
apneM

@ Spatial spectrum access game (SSAG) I' = (M. M, G, {U,} pen)

@ Key problems:
» Does SSAG have a Nash equilibrium?
» |f SSAG has an equilibrium, how to achieve it?
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Spatial Spectrum Access Game (SSAG)

@ Key problems:
» | Does SSAG have a Nash equilibrium?
» |f SSAG has an equilibrium, how to achieve it?
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Existence of Nash Equilibrium

@ Pure Nash equilibrium a* = (a, ..., ay)

a; = argmax U,(a,,a* ,).Vne N

dn

» SUs are mutually satisfactory (no SU can improve unilaterally)
@ Mixed strategy o, = (07, ..., 08)

» o, — probability of SU n choosing channel m

» U,(o1,...,0n) — SU throughput under mixed strategies

@ Mixed Nash equilibrium (o7, ...,0})

oy =argmax U,(op 0" ,),Vne N

On

@ Example: 2 SUs, 2 Channels, and U,(a
» Pure Nash equilibrium: (1,2) and (2,
» Mixed Nash equilibrium: ((% ). (3.

o—o
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Existence of Nash Equilibrium

@ SSAG always has a mixed Nash equilibrium
» SSAG is a finite game
» Finite game always has a mixed Nash equilibrium (John Nash 1950)
» Require channel switching

@ Pure Nash equilibrium requires no channel switching

@ SSAG may not admit a pure Nash equilibrium
» Example: 3 SUs, 2 channels, Up(a) = p[[;cpin(a)(1 — P)

VAN

@ Graphical structure plays a key role



Existence of Nash Equilibrium on Directed Graphs

Lemma one:

@ Suppose that SSAG on a directed graph G has a pure Nash
equilibrium

@ Construct a new SSAG by adding a new SU
» Can not generate interference to SUs in original SSAG
» May receive interference from SUs in original SSAG

@ New SSAG game also has a pure Nash equilibrium
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Existence of Nash Equilibrium on Directed Graphs

Theorem

SSAG on a directed acyclic graph has a pure Nash equilibrium.

» Directed acyclic graph can be given a topological sort (ordering of
nodes)

» No edges directed from nodes of high order to nodes of low order
1 2

AV v e
5 \\'-...___x,/,,
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Existence of Nash Equilibrium on Directed Graphs

@ Congestion property (CP):
Nir(a) C N7r(a) =gn(N;"(a)) > gn(N;"(a))
» More contending SUs, less chance to grab the channel
» Natural for practical wireless systems
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Existence of Nash Equilibrium on Directed Graphs

Lemma two:
@ Suppose that SSAG satisfying CP on a directed graph G has a pure
Nash equilibrium

@ Construct a new SSAG by adding a new SU

» Channel contention satisfies CP
» May generate/receive interference to/from at most one SUs in

original SSAG

@ New SSAG game also has a pure Nash equilibrium
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Existence of Nash Equilibrium on Directed Graphs

Lemma two:
@ Suppose that SSAG satisfying CP on a directed graph G has a pure
Nash equilibrium

@ Construct a new SSAG by adding a new SU

» Channel contention satisfies CP
» May generate/receive interference to/from at most one SUs in

original SSAG

@ New SSAG game also has a pure Nash equilibrium

4 :
« N

N
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Existence of Nash Equilibrium on Directed Graphs

Theorem

SSAG satistying CP on a directed tree/forest has a pure Nash equilibrium. J

» Directed tree — the corresponding graph without directions is a tree

AN VAN

» Directed forest — a disjoint union of directed trees

N\
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Existence of Nash Equilibrium on Directed Graphs

@ More interference graphs can be constructed from Lemmas one & two
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Existence of Nash Equilibrium

General Directed Graph

B Always has a mixed NE
EMay not has a pure NE

Directed Acyclic Graph

: Directed Tree \ Directed Forest

e

\

B Game with random backoff]
mechanism and throughput
function satisfying (13), (15),
or(21) has a pure NE

B Game with Aloha

B Game with random
backoff mechanism has
apure NE

@chanism has a pure NE

\_ /

\

B Game satisfying CP G isfying CP
B Always has a pure NE ame satisfying
\_ always has a pure NE ) always has a pure NE
/General Undirected Graph
Complete Graph \ Complete Regular

Bipartite Graph Bipartite Graph

W N

BGame with random backoff
mechanism and throughput
function satisfying (11) hasa
pure NE

)
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Spatial Spectrum Access Game (SSAG)

@ Key problems:

» Does SSAG have a Nash equilibrium?
» | If SSAG has an equilibrium, how to achieve it?
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Achieving Equilibrium For SSAG

@ SSAG always has a mixed Nash equilibrium

@ Sharing information is not incentive compatible
» SUs with individual intelligence are competitive

@ How to achieve a mixed Nash equilibrium without information
exchange?

@ Distributed learning mechanism
» Extend single-agent reinforcement learning to a multi-agent setting
» Each SU estimates its throughput locally
» Each SU adapts channel access strategy based on accumulated
estimations
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Distributed Learning For SSAG

@ SU n chooses a channel a,(t) according to mixed strategy
o 0(t) = (4(t), ... M (1))
@ Mixed strategy o ,(t) is generated according to perceptions

P.(t) = (PL(t). ..., PM(t)) as

O':;n(t) _ ;’Xp(ﬁfpn (tl))
>_iz1exp(vPy (1))
» P"(t) — estimated performance of choosing channel m

» ~ — balance between exploration and exploitation

@ Perceptions P,(t) are updated as

~

(1 - /"ft)P[;n(t) W l'LtUn(a(t))* if an(t) = m

E otherwise

Pl (t+1)= {

» /i —smoothing factor
» Reinforce the perception of the channel just accessed

52



Convergence of Distributed Learning

@ 0 =(01,...,0pN) is an e-approximate mixed Nash equilibrium if

Un(on,0-n) > max Un(6p,0-p) —€,YVn e M

» ¢ — gap from an exact mixed Nash equilibrium
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Convergence of Distributed Learning
Convergence by stochastic approximation theory

@ ~ satisfies

1
<
2 maXmeM‘neN{emng} maxneN{|Nn|}

-~/

/

» Smaller yY==more random exploration=—-better environment
understanding

® Y . ur=o00and Y, p? < oo

Theorem

Distributed learning for SSAG converges to an e-approximate mixed Nash
equilibrium o* with € = maxneN{—% Zgzl o™ Inop*}.

» ¢ < ZInM, e.g., random channel access

> Conv’ergence depends on the structure of interference graph
» [rade-off between exploration and exploitation: smaller ~ for
convergence—>larger performance gab ¢
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Simulation

@ M =5 channels and N = 9 SUs on four different interference graphs

(b)

(d)
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Simulation

@ Up-to 100% performance improvement over random access

350 W RandomAccess

M Distributed Learning

w
(=
o

M Centralized Optimization

(b)

N
w
o

N
(=]
o

[
(=3
o

(%))
o
i

System Average Throughput
8

o

Graph (a) Graph (b) Graph (c) Graph (d)

@ At most 28% performance loss over centralized optimal solution on
Graph (b) without spatial reuse

@ At most 10% performance loss over centralized optimal solution on
Graphs (a), (c), and (d) with spatial reuse

o ]o)



Summary of Spatial Spectrum Access Game

@ SSAG for competitive spectrum sharing with spatial reuse
@ Explore the existence of both pure and mixed Nash equilibrium

@ Distributed learning for achieving approximate mixed Nash equilibrium
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