Advanced Computer Networks SS 2016

Xu Chen
Humboldt Fellow
Institute of Computer Science
University of Göttingen, Germany

Outline of Wireless Block

- Game theory and its applications
- Game theory basics and concepts
- Distributed Spectrum Sharing Application
- Social Group Maximization Framework
- Introduction to the framework
- Wireless Network Applications
- Mobile Data Offloading
- Basics and ideas
- Optimized Offloading Decision

Final Exam in this block only covers basic concepts and examples

Introduction to Game Theory

Game Theory

Rational - user aims to optimize its own objective
Interaction - user needs to take others' decisions into account
"...Game Theory is designed to address situations in which the
outcome of a person's decision depends not just on how they
choose among several options, but also on the choices made by the
people they are interacting with..." --David Easley and Jon Kleinberg
"... Game theory is the study of the ways in which strategic
interactions among rational agents produce outcomes with respect
to the utilities of those agents" --Stanford Encyclopedia of Philosophy

A Brief History

- 1944: Von Neumann and Oskar Morgenstern Theory of Games and Economic Behavior Two-player games
- 1950: John Nash

Nash Equilibrium
Equilibrium points in n-player games

von Neumann 1903-1957

- After 1950s: widely used in economics, politics, biology...
Competition between firms
Auction design
Role of punishment in law enforcement International policies
Evolution of species

Relevance to Networking Research

- Economic issues become increasingly important
- Interactions with/between human users
e.g., data plan pricing, resource allocation
- Independent service providers
e.g., bandwidth trading, peering agreements
- Tool for system design
- Distributed algorithms
- Multi-objective optimization
- Incentive compatible protocols

Game Theory Basics

- Strategic game form (P, S, U)
- Players $\left(P_{1}, \ldots, P_{N}\right)$: finite number of decision makers
- Strategy sets $\left(S_{1}, \ldots, S_{N}\right)$: player P_{i} has a nonempty set S_{i} of actions/strategies s_{i}
- Payoff function $U_{i}\left(s_{1}, \ldots, s_{N}\right)$: player's preference/individual utility
- Pure Nash equilibrium (NE)
- A strategy profile $\left(s_{1}^{*}, \ldots, s_{i}^{*}, \ldots, s_{N}^{*}\right)$ is a NE if for each player i

$$
U_{i}\left(s_{1}^{*}, \ldots, s_{i}^{*}, \ldots, s_{N}^{*}\right) \geq U_{i}\left(s_{1}^{*}, \ldots, s_{i}, \ldots, s_{N}^{*}\right), \forall s_{i} \in S_{i}
$$

- No player has incentive to deviate (stable system point)
- NE is a fixed point of the best response functions

$$
s_{i}^{*}=\underset{c \in \in \mathbb{C}}{\operatorname{argmax}} U_{i}\left(s_{1}^{*}, \ldots, s_{i}, \ldots, s_{N}^{*}\right), \forall i
$$

- There is no universal rule for finding a Nash equilibrium!

Prisoner's Dilemma

- Two suspects are arrested
- The police lack sufficient evidence to convict the suspects, unless at least one confesses
- The police hold the suspects in two separate rooms, and tell each of them three possible consequences:
- If both deny: 1 month in jail each
- If both confess: 6 months in jail each
- If one confesses and one denies:
> The one confesses: walk away free of charge
$>$ The one denies: serve 12 months in jail

Prisoner's Dilemma

Prisoner's Dilemma

- Strictly dominated strategy
- Player i 's strategy s_{i}^{\prime} is strictly dominated by player i 's strategy s_{i} if

$$
U_{i}\left(s_{i}, s_{-i}\right)>U_{i}\left(s_{i}^{\prime}, s_{-i}\right), \forall s_{-i}
$$

where s_{-i} is the strategy profile of all the other players except player i

- No matter what other people do, by choosing s_{i} instead of s_{i}^{\prime}, player i will always obtain a better payoff
- Key principle: Never play a strictly dominated strategy

Prisoner's Dilemma

Deny is strictly dominated by Confess!

Finding Nash Equilibrium

- When there are no strictly dominated strategies, we can not easily "simplify" the game
- Nash equilibrium is a state of mutual best responses
- Key principle: derive the best responses

Stag Hunt

- Two hunters decide what to hunt independently
- Each one can hunt a stag (deer) or a hare
- Successful hunt of stag requires cooperation
- Successful hunt of hare can be done individually
- Simultaneous decisions without prior communications

Stag Hunt

There is no strictly dominated strategy
Find out a player's best response given the other player's choice

Stag Hunt

Given Player 2 chooses Stag

Stag Hunt

Given Player 2 chooses Hare

Stag Hunt

Stag Hunt

- Two Nash equilibria exist
- (Stag, Stag) is payoff dominant
$>$ Both players get the best payoff possible
$>$ Require trust among players to achieve coordination
- (Hare, Hare) is risk dominant
$>$ Minimum risk if player is uncertain of each other's choice

Battle of Sexes

- A couple decide where to go during Friday night without communications
- Husband prefers to go and watch football
- Wife prefers to go and watch ballet
- Both prefer to stay together during the night

Battle of Sexes

There is no strictly dominated strategy
Find out a player's best response given the other player's choice

Battle of Sexes

Given Wife chooses Football

Battle of Sexes

Given Wife chooses Football

Battle of Sexes

NE is a state of mutual best responses

Cournot Competition

- Prisoner's dilemma, Stag Hunt, Battle of Sexes are finite games with finite number of actions for each player
- Cournot competition is a continuous game in which a player has continuous (infinite) choices

Cournot Competition

- Two firms producing the same kind of product in quantities of q_{1} and q_{2}, respectively
- Market clearing price $p=A-q_{1}-q_{2}$
- Cost of unit production is C for both firms
- Profit for firm i

$$
\begin{aligned}
J_{i} & =(p-C) q_{i} \\
& =\left(A-C-q_{1}-q_{2}\right) q_{i}
\end{aligned}
$$

Define $B \equiv A-C$

- Objective of firm i : choose q_{i} to maximize profit

$$
q_{i}^{*}=\underset{q_{i}}{\operatorname{argmax}}\left(B-q_{1}-q_{2}\right) q_{i}
$$

Cournot Competition

- Firm i 's best response, given its competitor's q_{j}

$$
q_{i}^{*}=\left(B-q_{j}\right) / 2
$$

- NE $\left(q_{1}^{*}, q_{2}^{*}\right)$ of Cournot competition satisfies

$$
\left\{\begin{array}{l}
q_{1}^{*}=\left(B-q_{2}^{*}\right) / 2 \\
q_{2}^{*}=\left(B-q_{1}^{*}\right) / 2
\end{array}\right.
$$

- This leads to the NE as

$$
q_{1}^{*}=q_{2}^{*}=B / 3
$$

Cournot Competition

- Firm i 's best response, given its competitor's q_{j}

$$
q_{i}^{*}=\left(B-q_{j}\right) / 2
$$

- NE $\left(q_{1}^{*}, q_{2}^{*}\right)$ of Cournot competition satisfies

$$
\left\{\begin{array}{l}
q_{1}^{*}=\left(B-q_{2}^{*}\right) / 2 \\
q_{2}^{*}=\left(B-q_{1}^{*}\right) / 2
\end{array}\right.
$$

Summary

- Game theory: players, strategies, and payoffs
- Nash equilibrium
- Strictly dominated strategy
- Best response strategy
- Finite and infinite(continuous) games

Application in

Distributed Spectrum Sharing

Distributed Spectrum Sharing

- Spectrum is scarce
- Most spectrums have been exclusively licensed
- More and more wireless devices emerge

- Spectrum is under-utilized
- E.g., average spectrum utilization in Chicago is lower than 20\%

Distributed Spectrum Sharing

- Dynamic spectrum access with cognitive radios
- Address spectrum under-utilization problem
- Primary user (PU) - licensed spectrum holder
- Secondary user (SU) - unlicensed spectrum user
- Enable SUs opportunistically share the spectrum with PUs

Distributed Spectrum Sharing

- Achieving efficient distributed spectrum sharing among SUs is challenging
- Spectrum opportunities change over frequency, time, and space
- Individual SU has limited observations of the entire network
- Multiple simultaneous SUs may generate severe interference
- SUs are hence required to make intelligent decisions for efficient spectrum sharing

Distributed Spectrum Sharing

Key problem: how to share spectrum in an intelligent way?

- Individual intelligence
- SUs share the spectrum competitively based on strategic interactions
- SUs are fully rational (e.g., belong to different authorities)
- Non-cooperative spectrum access games

Distributed Spectrum Sharing with Spatial Reuse

- SUs with individual intelligence share the spectrum based on competition
- Game theory for modeling competitive spectrum sharing
- Spatial aspect of competitive spectrum sharing is less understood
- Spatial reuse is a key feature of wireless communication
- Most existing works focus on fully interfering case
- Spatial spectrum access game for competitive spectrum sharing with spatial reuse

System Model

- M heterogeneous channels
- Channel state $S_{m}(\tau) \in\{0,1\}$ with an idle probability of θ_{m}
- $\mathcal{M}=\{1,2, \ldots, M\}$ - the set of channels
- N heterogeneous SUs
- Data rate $b_{m}^{n}(\tau)$ follows i.i.d random process with mean B_{m}^{n}
- $\mathcal{N}=\{1,2 \ldots, N\}$ - the set of SUs

System Model

- Interference graph $G=\{\mathcal{N}, \mathcal{E}\}$
- \mathcal{N} - vertex set
- $\mathbf{d}_{n}=\left(d_{T x_{n}}, d_{R x_{n}}\right)$ - locations of transmitter and receiver of SU n
- $\mathcal{E}=\left\{(i, j):\left\|d_{T x_{i}}, d_{R x_{j}}\right\| \leq \delta_{i}, \forall i, j \neq i \in \mathcal{N}\right\}$ - interference edge set
- $\mathcal{N}_{n}=\{i:(i, n) \in \mathcal{E}, i \in \mathcal{N}\}$ - interfering SUs of SU n

System Model

- Channel contention model
- $\mathbf{a}=\left(a_{1}, \ldots, a_{N}\right)-$ channel selections of all SUs
- $\mathcal{N}_{n}^{a_{n}}(\mathbf{a})=\left\{i \in \mathcal{N}_{n}: a_{i}=a_{n}\right\}$ - interfering SUs choosing the same channel as SU n
- $g_{n}\left(\mathcal{N}_{n}^{a_{n}}(\mathbf{a})\right)$ - probability that SU n can grab the channel
- Expected SU throughput

$$
U_{n}(\mathbf{a})=\theta_{a_{n}} B_{a_{n}}^{n} g_{n}\left(\mathcal{N}_{n}^{a_{n}}(\mathbf{a})\right)
$$

Spatial Spectrum Access Game (SSAG)

- Each SU with individual intelligence tries to maximize its own throughput

$$
\max _{a_{n} \in \mathcal{M}} U_{n}\left(a_{n}, a_{-n}\right), \forall n \in \mathcal{N}
$$

- Spatial spectrum access game (SSAG) $\Gamma=\left(\mathcal{N}, \mathcal{M}, G,\left\{U_{n}\right\}_{n \in \mathcal{N}}\right)$
- Key problems:
- Does SSAG have a Nash equilibrium?
- If SSAG has an equilibrium, how to achieve it?

Spatial Spectrum Access Game (SSAG)

- Key problems:
- Does SSAG have a Nash equilibrium?
- If SSAG has an equilibrium, how to achieve it?

Existence of Nash Equilibrium

- Pure Nash equilibrium $\mathbf{a}^{*}=\left(a_{1}^{*}, \ldots, a_{N}^{*}\right)$

$$
a_{n}^{*}=\arg \max _{a_{n}} U_{n}\left(a_{n}, a_{-n}^{*}\right), \forall n \in \mathcal{N}
$$

- SUs are mutually satisfactory (no SU can improve unilaterally)
- Mixed strategy $\boldsymbol{\sigma}_{n}=\left(\sigma_{1}^{n}, \ldots, \sigma_{M}^{n}\right)$
- σ_{m}^{n} - probability of SU n choosing channel m
- $U_{n}\left(\sigma_{1}, \ldots, \sigma_{N}\right)-\mathrm{SU}$ throughput under mixed strategies
- Mixed Nash equilibrium $\left(\sigma_{1}^{*}, \ldots, \sigma_{N}^{*}\right)$

$$
\boldsymbol{\sigma}_{n}^{*}=\arg \max _{\sigma_{n}} U_{n}\left(\boldsymbol{\sigma}_{n}, \boldsymbol{\sigma}_{-n}^{*}\right), \forall n \in \mathcal{N}
$$

- Example: 2 SUs, 2 Channels, and $U_{n}(\mathbf{a})=p \prod_{i \in \mathcal{N}_{n}^{a n}(\mathbf{a})}(1-p)$
- Pure Nash equilibrium: $(1,2)$ and $(2,1)$
- Mixed Nash equilibrium: $\left(\left(\frac{1}{2}, \frac{1}{2}\right),\left(\frac{1}{2}, \frac{1}{2}\right)\right)$

Existence of Nash Equilibrium

- SSAG always has a mixed Nash equilibrium
- SSAG is a finite game
- Finite game always has a mixed Nash equilibrium (John Nash 1950)
- Require channel switching
- Pure Nash equilibrium requires no channel switching
- SSAG may not admit a pure Nash equilibrium
- Example: 3 SUs, 2 channels, $U_{n}(\mathbf{a})=p \prod_{i \in \mathcal{N}_{n}^{2 n}(\mathbf{a})}(1-p)$

- Graphical structure plays a key role

Existence of Nash Equilibrium on Directed Graphs

Lemma one:

- Suppose that SSAG on a directed graph G has a pure Nash equilibrium
- Construct a new SSAG by adding a new SU
- Can not generate interference to SUs in original SSAG
- May receive interference from SUs in original SSAG
- New SSAG game also has a pure Nash equilibrium

Existence of Nash Equilibrium on Directed Graphs

Theorem

SSAG on a directed acyclic graph has a pure Nash equilibrium.

- Directed acyclic graph can be given a topological sort (ordering of nodes)
- No edges directed from nodes of high order to nodes of low order

Existence of Nash Equilibrium on Directed Graphs

- Congestion property (CP):
$\tilde{\mathcal{N}}_{n}^{a_{n}}(\mathbf{a}) \subseteq \mathcal{N}_{n}^{a_{n}}(\mathbf{a}) \Longrightarrow g_{n}\left(\tilde{\mathcal{N}}_{n}^{a_{n}}(\mathbf{a})\right) \geq g_{n}\left(\mathcal{N}_{n}^{a_{n}}(\mathbf{a})\right)$
- More contending SUs, less chance to grab the channel
- Natural for practical wireless systems

Existence of Nash Equilibrium on Directed Graphs

Lemma two:

- Suppose that SSAG satisfying CP on a directed graph G has a pure Nash equilibrium
- Construct a new SSAG by adding a new SU
- Channel contention satisfies CP
- May generate/receive interference to/from at most one SUs in original SSAG
- New SSAG game also has a pure Nash equilibrium

Existence of Nash Equilibrium on Directed Graphs

Lemma two:

- Suppose that SSAG satisfying CP on a directed graph G has a pure Nash equilibrium
- Construct a new SSAG by adding a new SU
- Channel contention satisfies CP
- May generate/receive interference to/from at most one SUs in original SSAG
- New SSAG game also has a pure Nash equilibrium

Existence of Nash Equilibrium on Directed Graphs

Theorem

SSAG satisfying CP on a directed tree/forest has a pure Nash equilibrium.

- Directed tree - the corresponding graph without directions is a tree

- Directed forest - a disjoint union of directed trees

Existence of Nash Equilibrium on Directed Graphs

- More interference graphs can be constructed from Lemmas one \& two

Existence of Nash Equilibrium

Spatial Spectrum Access Game (SSAG)

- Key problems:
- Does SSAG have a Nash equilibrium?
- If SSAG has an equilibrium, how to achieve it?

Achieving Equilibrium For SSAG

- SSAG always has a mixed Nash equilibrium
- Sharing information is not incentive compatible
- SUs with individual intelligence are competitive
- How to achieve a mixed Nash equilibrium without information exchange?
- Distributed learning mechanism
- Extend single-agent reinforcement learning to a multi-agent setting
- Each SU estimates its throughput locally
- Each SU adapts channel access strategy based on accumulated estimations

Distributed Learning For SSAG

- SU n chooses a channel $a_{n}(t)$ according to mixed strategy $\sigma_{n}(t)=\left(\sigma_{n}^{1}(t), \ldots, \sigma_{n}^{M}(t)\right)$
- Mixed strategy $\sigma_{n}(t)$ is generated according to perceptions

$$
\mathbf{P}_{n}(t)=\left(P_{n}^{1}(t), \ldots, P_{n}^{M}(t)\right) \text { as }
$$

$$
\sigma_{n}^{m}(t)=\frac{\exp \left(\gamma P_{n}^{m}(t)\right)}{\sum_{i=1}^{M} \exp \left(\gamma P_{n}^{i}(t)\right)}
$$

- $P_{n}^{m}(t)$ - estimated performance of choosing channel m
- γ - balance between exploration and exploitation
- Perceptions $\mathbf{P}_{n}(t)$ are updated as

$$
P_{n}^{m}(t+1)= \begin{cases}\left(1-\mu_{t}\right) P_{n}^{m}(t)+\mu_{t} \tilde{U}_{n}(\mathbf{a}(t)), & \text { if } a_{n}(t)=m \\ P_{n}^{m}(t), & \text { otherwise }\end{cases}
$$

- μ_{t} - smoothing factor
- Reinforce the perception of the channel just accessed

Convergence of Distributed Learning

- $\boldsymbol{\sigma}=\left(\sigma_{1}, \ldots, \sigma_{N}\right)$ is an ϵ-approximate mixed Nash equilibrium if

$$
U_{n}\left(\sigma_{n}, \sigma_{-n}\right) \geq \max _{\hat{\sigma}_{n}} U_{n}\left(\hat{\sigma}_{n}, \sigma_{-n}\right)-\epsilon, \forall n \in \mathcal{M}
$$

- ϵ - gap from an exact mixed Nash equilibrium

Convergence of Distributed Learning

Convergence by stochastic approximation theory

- γ satisfies

$$
\gamma<\frac{1}{2 \max _{m \in \mathcal{M}, n \in \mathcal{N}}\left\{\theta_{m} B_{m}^{n}\right\} \max _{n \in \mathcal{N}}\left\{\left|\mathcal{N}_{n}\right|\right\}}
$$

- Smaller $\gamma \Longrightarrow$ more random exploration \Longrightarrow better environment understanding
- $\sum_{t} \mu_{t}=\infty$ and $\sum_{t} \mu_{t}^{2}<\infty$

Theorem

Distributed learning for SSAG converges to an ϵ-approximate mixed Nash equilibrium σ^{*} with $\epsilon=\max _{n \in \mathcal{N}}\left\{-\frac{1}{\gamma} \sum_{m=1}^{M} \sigma_{m}^{n *} \ln \sigma_{m}^{n *}\right\}$.

- $\epsilon \leq \frac{1}{\gamma} \ln M$, e.g., random channel access
- Convergence depends on the structure of interference graph
- Trade-off between exploration and exploitation: smaller γ for convergence \Longrightarrow larger performance gab ϵ

Simulation

- $M=5$ channels and $N=9$ SUs on four different interference graphs

(b)

(c)

(d)

Simulation

- Up-to 100\% performance improvement over random access

(b)

- At most 28% performance loss over centralized optimal solution on Graph (b) without spatial reuse
- At most 10% performance loss over centralized optimal solution on Graphs (a), (c), and (d) with spatial reuse

Summary of Spatial Spectrum Access Game

- SSAG for competitive spectrum sharing with spatial reuse
- Explore the existence of both pure and mixed Nash equilibrium
- Distributed learning for achieving approximate mixed Nash equilibrium

