
Peer-to-Peer Networks

Advanced Computer Networks

Summer Semester 2015



Introduction to Peer-to-Peer 

Systems



o What? 

o What is a Peer-to-Peer (P2P) system?

o Why?

o Why are we talking about P2P in this lecture?

o How?

o How are P2P systems working?



What is a P2P System?
o “Peer-to-peer (abbreviated to P2P) refers to a computer network in 

which each computer in the network can act as a client or server 

for the other computers in the network, allowing shared access to 

files and peripherals without the need for a central server.” [Wiki]

o The sharing of computer resources by direct exchange, rather 

than requiring the intermediation of a centralized server.



Features

o Decentralized: 

o No central component

o Role: “all peers are equal”

o Self-organized

o Highly dynamic behavior of nodes:

• Free to come, free to go

o Overlay Network
• A network built on the top of physical network

• Nodes are connected by logical links

• Flat system architecture

Bob

Alice

Mike



Features (Cont.)

o Large-scale resources

o Heterogeneous

o Millions of nodes

o Collaboration

o Based on voluntary participation

o Global reach

o Flexible, resilient to attacks, anonymous

o …



Why P2P?



Is P2P still a valid topic?

o 2004: More than half of Internet traffic P2P

o 2010: Still 39%, 2014: ~20%

o Absolute P2P traffic increases (by 100% 

2010-2014)

Im
a

g
e

 f
ro

m
: 
S

a
n

d
v
in

e
G

lo
b

a
l 
In

te
rn

e
t 
P

h
e

n
o

m
e

n
a

R
e

p
o

rt
, 
2

n
d

 h
a

lf
 2

0
1

4



Client/Server 

o The client arrives and requests a service at 

any given point in time

o The server is dedicated to the service and 

responds to the client Apple.com

Problems
• Hot spot-uneven workload
• Bottleneck: bandwidth, CPU, …
• Single point of failure
• Scalability
• Maintenance



Replication

o Server Replication

Apple.com
Apple.com
(Mirror)

Apple.com
(Mirror)

Problems
• Hot spot-uneven workload
• Bottleneck: bandwidth, CPU, …
• Single point of failure
• Scalability
• Maintenance



Proxy, CDN
Apple.com IBM.com Microsoft.com

Problems
• Hot spot-uneven workload
• Bottleneck: bandwidth, CPU, …
• Single point of failure
• Scalability
• Maintenance



P2P: Advantages

o Changes the way of network bandwidth use

o Easy to deploy, easy to use

o Dynamic for joining and leaving

o Distributed resource sharing

o Files, data, storage, computation, …

o Provide something useful and free

o Anyone can contribute

o Fault tolerant

o Service ability: large scale

o Service of quality: the more users, the better



P2P: How?



P2P Applications and Systems
o File sharing

o Napster, Gnutella, BitTorrent

o Multimedia streaming

o P2P TV: PeerCast, PPlive, PPStream, TVUZattoo, ….

o P2P based VOD systems

o Communication

o Skype, MSN, …

o Computation

o SETI@home: Search for Extra-Terrestrial Intelligence

• In 2014: 684 TeraFLOPS computational power (250k active 

users on average)



Current State of P2P

o P2P applications are popular over the world

o P2P networks are mainly used for resource 

sharing

o Music, videos, software, …

o Some are illegal copyrighted materials

o New emerging applications

o Online media streaming, P2P TV

o P2P telephone system (e.g., Skype)

o Software installation and update

o Decentralized social network applications



Typical Research Topics

o Structure

o How to search for information

• Unstructured P2P

• Structured P2P

o Security and privacy

o How to protect system security and user privacy?

o Legal issues



Search in P2P Networks

o How to locate resources in P2P networks?



DNS- Domain Name System

o Translates queries for domain names into IP 

addresses for the purpose of locating 

computer services and devices worldwide

o Distributed database organized in hierarchical 

structure



Information Retrieval System

o Keyword-based



Search in P2P Networks?

o Unstructured P2P

o Highly flexible, dynamic, easy to maintain

o Hard to find information

o Structured P2P

o Hard to maintain its structure

o Easy to find information



Unstructured P2P Networks



Unstructured P2P Networks

o Example: BitTorrent

o Successor of Napster, Gnutella, …

o Napster: Pioneer P2P, shut down in 2001

• easy to manage and search, but relied on central lookup

server (drawbacks?) 

• data transfer directly between peers

o Gnutella: Answer to Napster weaknesses

• fully distributed P2P network based on overlay network, 

no central server

• Search: flooding the network with request (drawbacks?)



BitTorrent

o A new popular approach to sharing large files

o In 2014, origina of over 30% of internet traffic in 

Asia, ~15% in Europe

o Originally used for distributing legal content

o Linux distributions, software updates

o Official movies

o Goal: 

o Quickly and reliably replicate one file to a large 

number of clients

o Call it “P2P content distribution”



Basic Idea

o Chunking:

o Files split into smaller pieces or chunks

o Chunks can be downloaded in parallel

o Downloading order does not matter 

o Swarming

o Clients join a crowd of peers uploading and 

downloading the same content

o Nodes request chunks from neighbors and 

download content in parallel

o Use a web server to publish content

o Use a central unit to locate resource



Basic Idea



Basic Components
o Web server: for content publication

o Tracker: a special central server for running 

the content distribution system

o Tracking active peers

o Mapping from file name to peers

o Peer

o Seed: a peer with a complete copy of the file

o Leecher: peer still downloading the file

o “.torrent” file: metadata and description of the 

file

o The number of chunks

o The tracker’s IP



Operation

o Sharing a file: 
o (1) Seed generates a “.torrent” file from the file

o (2) Upload the “.torrent” file to some public web server or sending it to 

friends by email

o Searching a file:
o No dedicated search component

o User can search “.torrent” file from web server

o Downloading a file:
o (1) Download the “.torrent” file

o (2) Connect to the tracker to locate the file

o (3) Choose some fast peers to download chunks in parallel 



Tit-for-Tat Policy and Chunk 

Selection

o Tit-for-Tat policy

o The more you give, the more you get

o A peer serves peers that serve it

o Encourages cooperation, discourages free-riding

o Chunk selection

o Peers uses rarest first policy when downloading 

chunks

o Having a rare chunk makes peer attractive to 

others

o The goal is to maximize availability of each chunk



BitTorrent : Pros and Cons

o Strengths

o Works well for “hot content”, very fast and resilient

o Proficient in utilizing partially downloaded files

o Discourages “free-riding”

o Efficient for distributing large files to a large 

number of clients

o Weaknesses

o Assumes all interested peers active at same time

o Tracker could be single point of failure

o Lack of search feature 



Structured P2P Networks



Structured P2P Networks

o Routing & Lookup

o DHTs

o The following slides are based on a lecture by Prof. Roscoe, 

ETH Zürich, and provided with his kind permission



Problem Space

o Challenge: spread lookup database among 

P2P participants

o Goals:

o Scalable – operates with millions of nodes

o Self-organized – no central, external control

o Load-distributing – every member should 

contribute (at least ideally)

o Fault tolerant – robust against node leaves or 

failures

o Robustness – resiliance against malicious activity



Idea
o Distributed Hash Tables

o Hash content identifiers to machines

o Hash IP addresses

o Store content (or content locator) at machine with 

closest hash value

o Originally 4 papers submitted to SIGCOMM 

2001:

o CAN, Chord, Pastry, Tapestry

o Widely used in practice (e.g., BitTorrent uses

Kademlia DHT)



Background: Hash Functions

o Hash function maps arbitrary input sequence to fixed 

length output:

o H(m) = x, x of fixed length

o Crypto-Hashes:

o Small input changes result in large output changes 

(Avalanche criterium)

o If H(m1) = x is known, it is hard to find another m2 giving 

H(m2) (collision resistant)

o Inheritly hash functions span whole 2k space (k bits 

hash length)



MD5 / SHA-1

o Message Digest Algorithm 5

o 128 bit hash values

o Weak collisions found

o SHA-1 (similar to MD4)

o 160 bit hash values

o Stronger than MD5, but „under researcher‘s attack“: find 

collisions in 269

o But: Both algorithms efficiently map input 

homogeniously to 2k space



DHTs

o Index data by hash value

o Assign each node in the network a portion of 

the hash address space

o DHT provides the lookup function



Example: Chord

o Published 2001 at SIGCOMM by Stoica et al. „Chord: A 

Scalable Peer-to-peer Lookup Service for Internet Applications”

o Keys are SHA-1 hashes – 160 bit identifiers

o Key: Identifier of a data item

o Value: Identifier of a node

o Host (key,value) pair at node with ID larger or 

equal to key – successor(key)



Identifier Space

o Identifier in 24 space

o Space from 0..15

o Nodes pick IDs:

• 2,5,6,11,14 covered by nodes

• Remaining values are not 

directly covered by a node



Successor

o First node in clockwise direction with ID larger 

or equal the key

o Examples:

o succ(6) = 6

o succ(12) = 14

o succ(15) = 2



How to store and locate data?

o Each (key,value) pair is assigned the 

identifier H(key)

o Each item is stored at 

its succ(H(key))

Drink Location H(Drink)

Beer Göttingen 12

Wine France 2

Whisky Scotland 9

Wodka Russia 14



Successor Pointer

o Each node points to its successor

o Known as node‘s succ 

pointer

o Example:

o 0‘s succ = 2

o 2‘s succ = 5

o ...



Basic Lookup of Data

o Lookup key:

o Calculate H(key)

o Follow succ pointers until key is found

o Lookup time: O(n)

o Example:

o „Where can I drink Whisky?“

o Calculate H(Whisky) = 9

o Traverse nodes:

• 2,5,6,11

o Return „Scotland“



Scalable Lookup

o Each node n maintains finger table (max k entries)

o for i in 0..k-1: finger[i] = succ(n+2i-1)

o Point to succ(n+1)

o Point to succ(n+2)

o Point to succ(n+4)

o ...

o Point to succ(n+2i-1)

o Makes lookup time logarithmic!

o O(log n)



Routing

o Determines the next hop

o Each node n knows 

succ(n+2i-1) for all i=1..k

o Forward queries for key 

to then highest 

predecessor of key

o Routing entries = log2(n)
k=4, n=16



Routing cont‘d

o Routing table size l

o Node 9 was the

highest 1 could

reach

o Node 9 is querying

again, finger to 13 is

best

k=4, n=16



Routing cont‘d

o 13 is handled by 14

o 14 completes the

route:

o 15 is found at 0



Routing cont‘d

o From node 1, 3 hops to node 0 where item 15 

is stored

o k=4 equals an ID space of 16, therefore the 

maximum number of hops is:

o Log2(16) = 4

o Average complexity is ½ log(n)



Routing cont‘d

o Such routing algorithms solve the lookup problem

o General concept:

o Each node has only a limited view on the network

o A node that receives a message containing a destination ID 

that is not managed by that node, it just forwards the request 

to the closest hop

o Here, algorithm is based on numeric closeness

o In Gummadi et al., „The Impact of DHT Routing 

Geometry on Resilience and Proximity“, SIGCOMM 

2003, implications are discussed



Recursive vs. Iterative Lookup

o Recursive: Each node forwards the request 

(as shown) to the next hop

o Fast, efficient

o Each node can optimize forwarding

o Iterative: The requesting client queries the 

next hop iteratively from the nodes

o Allows the lookup client to keep in control

o Lookup client detects and localizes failures



Achieved goals

o The DHT is scalable, as operations are 

performed in log(n)

o It is self-organized as each node directly 

knows its position (thanks to the hash 

function) and learns about the next hops

o On average load-distributing

o What about joins and especially leaves?



Node Join and Leave

o Node join:

1. Bootstrap: a new node contacts a known node in the DHT

2. The new node gets a partion of the address space

3. Routing information is updated

4. The new node retrieves all tuples for which it is responsible

o Node departure:

o Replication and load balancing

o Node failure:

o Reactive or proactive recovery

o Maintenance, load balancing, redistribution of tuples

o Data is lost if not replicated!



Node Join and Leave

o Join:

o Lookup of own ID‘s successor

o Contact that to get successors

and predecessor

o Leaves:

o Ping successors regularly

o Always ensure x live nodes in 

successor set

o Thereby, failures are treated

as „normal“



Node Join Example

o Assume node 9 joins



Node Join Example cont’d

o The new node takes 

over the docs in its 

“responsibility” range

o Docs 9,8 from

its successor



Node Leave

o Assume node 12 

leaves gracefully



Node Leave cont’d

o Data is transferred to 

succ(12) = 14

o Node 12 informs 

predecessor and 

successor, who 

update their 

finger tables



Direct vs. Indirect Storage

o Direct storage:

o Actual data is stored at the node responsible for it

o The data is copied towards the responsible node upon node 

join

o The node that contributed the data can leave without loss of 

its data

o But: High storage and communication overhead!

o Indirect storage:

o Instead of data, the references to the data are stored

o The inserting node keeps the data

o Lower load on the DHT



The Fragile Ring

o Problem: Everything is 

organized in a fragile ring 

structure

o Failure of a node breaks 

the ring and data is lost

o No way to recover as 

previous predecessor and 

successor don’t know 

about each other!



Successor Sets

o As a solution, each node keeps:

o A Successor set with pointers to the r 

closest successors

o Predecessor pointer

o If successor fails, replace 

with closest alive successor

o If predecessor fails, set 

pointer to nil

o Replicate objects throughout 

the successor set



Further Challenges

o How does a node learn its:

o Predecessors?

o Fingers?

o What if “better” fingers come along later?

o How would a node find out?

o How does a node react to failing or leaving 

fingers?

o All basically the same problem



Periodic Stabilization

o Used to make pointers eventually correct

o Requires an additional predecessor pointer

o First node met in anti-clockwise direction starting at n-1

o A node n joins the DHT through a node o:

o Find n’s successor by lookup(n)

o n sets its successor to the found successor

o Stabilization fixes the rest

• stabilize() function is run peridically by each node

o The new node does not determine its predecessor: its 

predecessor detects and fixes inconsistencies



Periodic Stabilization Example

1. 9 joins through node 0

2. 9 sets its predecessor to nil

3. 9 asks 0 for succ(9). Receives “12”

4. 9 sets its succ to 12



Periodic Stabilization Example

o 9 runs stabilize()

1. 9 asks 12 for its 

predecessor

2. 12 replies with “7”

3. 9 notifies 12 that 9 

is now its 

predecessor



Periodic Stabilization Example

o 7 runs stabilize()

1. 7 discovers from 12 

that pred(12) is now 9

2. 7 sets successor to 9

3. 7 notifies 9

4. 9 sets pred(9) to 7



Chord in a “Tree View”

o Finger tables are Chord’s core

o Providing O(log n) hop routing by at least halving 

the distance to the target by each hop

o Forest of binomial trees rooted at each key



Chord - Conclusion

o Lookup time: O(log n)

o Drawbacks:

o Rigidity

• Complicates recovery from failed nodes and routing table

• Precludes proximity-based routing

o Unidirectional routing

o Incoming traffic is not used to re-enforce routing 

tables

o Fault-tolerant, but not very robust. 



Other DHTs

o Kademlia (used in BitTorrent)

o Lookup also done in O(log n) – as with most DHTs

o Uses distance between two nodes: XOR of both 

nodes’ IDs

o Nodes still responsible for a part of ID space

o Location of content basically the same as in Chord

• Node closest to searched ID

• O(log n) since XOR can halve distance at each hop

• Note: This distance is not geographical

o For details: Maymounkov and Mazières, Kademlia: “A Peer-

to-peer Information System Based on the XOR metric”, 2002



Use of P2P/DHTs in our Research

o Decentralizing Online Social Networks (OSN)

o E.g.: SOUP [1] – developed in our research 

group (Master thesis topics available)

o Uses a DHT as a user directory (lookup users and 

connect to them)

o Completely P2P – no central server, no cloud 

infrastructure to store user data

o Benefit: users can control where and how to store 

data (including access control)

[1] D. Koll, J. Li, and X. Fu: SOUP – An Online Social Network By The People, For The 

People, in: ACM/USENIX Middleware, December 2014



References 

o [1] Stephanos Androutsellis-Theotokis and Diomidis Spinellis. A 

survey of peer-to-peer content distribution technologies. ACM 

Comput. Surv. 36(4), 335-371. 2004.

o [2] Hari Balakrishnan, M. Frans Kaashoek, David Karger, Robert 

Morris, and Ion Stoica. Looking up data in p2p systems. Comm. 

ACM 46,2(Feb.), 43–48. 2003.

o [4] Pouwelse, Johan; et al. "The Bittorrent P2P File-Sharing 

System: Measurements and Analysis". Peer-to-Peer Systems IV. 

Berlin: Springer. pp. 205–216. 2005.

o [5] Erik Nygren, Ramesh K. Sitaraman, and Jennifer Sun, The 

Akamai Network: A Platform for High-Performance Internet 

Applications, ACM SIGOPS Operating Systems Review, Vol. 44, 

No.3, July 2010.


