Demonstration & Course assignment

Advanced Topics in Mobile Communications (AToMIC): Social Network in Mobile Big Data Summer Semester 2016

M.Sc. Tao Zhao

Ph.D. student

Outline

- Demonstration
- Course assignment

Demonstration

What can we do in social network?

- Community identification
- Influential user identification
- Link prediction
- Point of interest recommendation
- Disease prediction
- Crime prediction
- Event monitoring
- 0 ...

Community question & answer (Q&A) sites

- What is community Q&A site (CQA)
 - Allow users to answer the questions posted by other users
 - Give positive or negative judgments to answers provided by others via voting
 - Popular QA portals: Yahoo!
 Answers, Stack Overflow, Quora,
 Zhihu

An innovative CQA -- Zhihu

What is Zhihu

- An innovative CQA that is more professional than traditional CQA sites and takes special efforts in improving content quality
- Draw the participation of both a rapidly growing user population and specific domain experts
- Another similar site: Quora

Main features of Zhihu

- Ask & answer questions
- Vote answers
- Follow users
- Follow topics & questions New features

What can we do with the dataset of Zhihu

- Many interesting things can be done
 - Characterize user activity in Zhihu
 - Distribution analysis
 - Correlation analysis
 - Identify influential users (opinion leaders) in some specific topic

Data collection

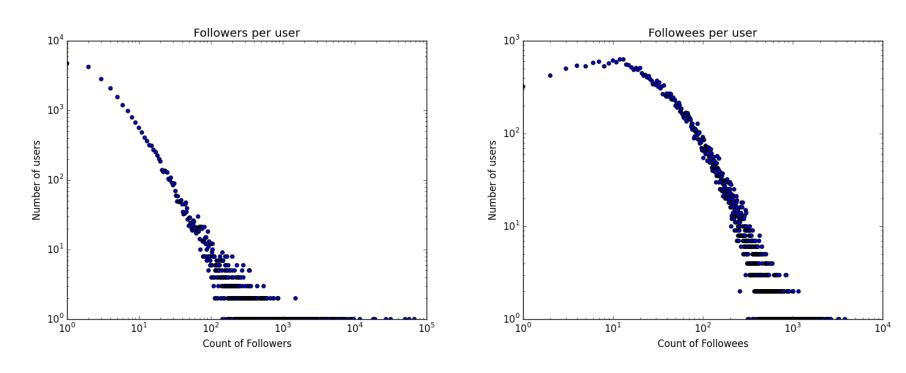
- Gather Zhihu dataset
 - Collect a set of 105118 users in Zhihu through a web-based crawler from February 2016
- Each user data contains
 - Follower and followee lists
 - Answer and question information, containing the number of answers and questions, topic tags, the number of received votes and thanks

Choose data analysis tools

- Depending on needs, some data analysis tools are as follows
 - MATLAB, or its open-source alternatives, Scilab and GNU Octave (great at dealing with numbers)
 - Python with libraries like Numpy, Scipy and Matplotlib (great for general purpose data analysis- particularly good at interacting with other tools)
 - R (Great for statistics)
- Use Python to process the Zhihu dataset

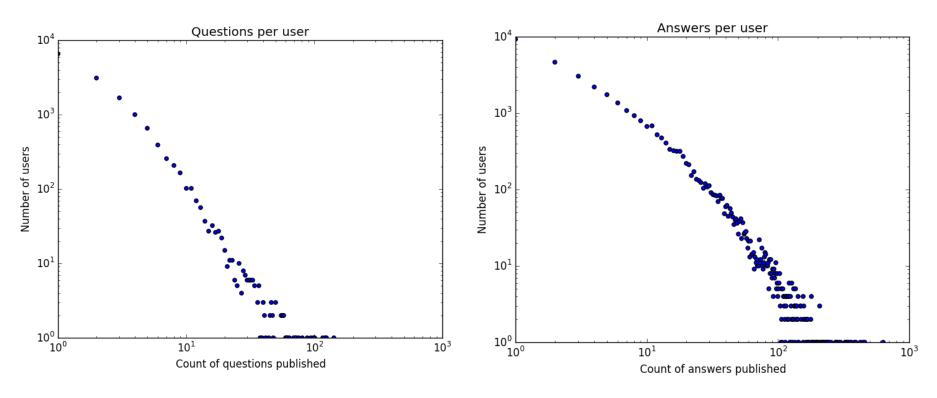
Basic statistics of dataset

Number of total users	105118
Average number of followers per user	12.2
Average number of followees per user	44.2
Average number of questions per user	0.5
Average number of answers per user	2.9
Average number of votes per user 34.8	
Average number of thanks per user	8.1

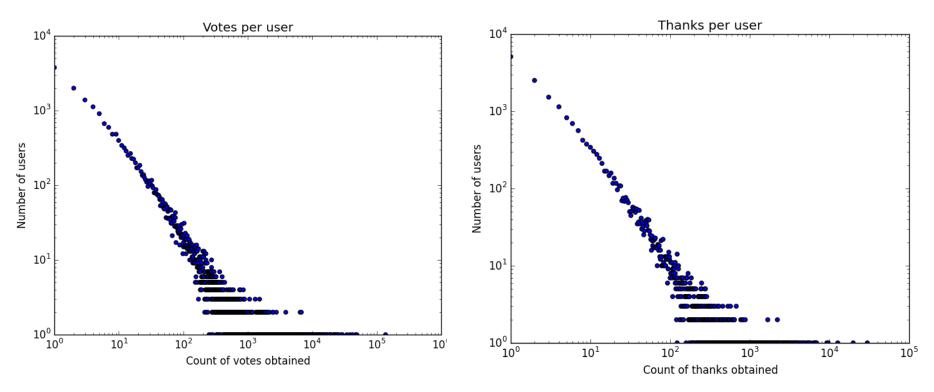


Distribution analysis

- Verify whether degree distribution in Zhihu follows a power law
 - Power-law distribution has been identified in social science
 - It means that a small portion have extremely high degree while most have low degree


Distribution of follower & followee

About 37% of users have no follower and 0.03% do not follow anyone, while 93% of users have less than 10 followers and 99.8% have less than 100 followees

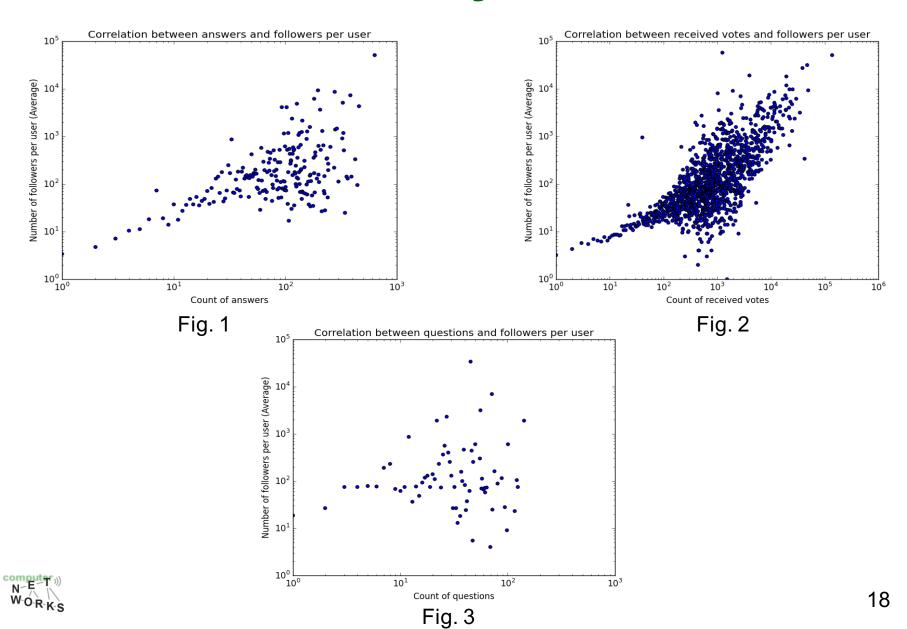

Distribution of question & answer

About 80% of users do not ask any questions and 69% of users give no answer, while 99% of users ask less than 10 questions and 93% of users give less than 10 answers

Distribution of vote & thank

About 82% of users do not get any thanks and 79% get no vote, while 95% of users get less than 10 thanks and 90% get less than 10 votes

Correlation analysis


- Investigate which factors influence the number of followers per user
 - Leverage Pearson correlation coefficient to measure correlation between the number of followers per user and another factor (the number of answers, votes and questions)
 - Pearson product-moment correlation coefficient is a measure of the linear correlation between two variables

```
-0.00-0.19: "very weak"
```

- 0.20-0.39: "weak"
- 0.40-0.59: "moderate"
- 0.60-0.79: "strong"
- 0.80-1.0: "very strong"

Correlation analysis

Correlation analysis

	Pearson correlation coefficient
Count of answers	0.45 (moderate)
Count of votes	0.65 (strong)
Count of questions	0.05 (very weak)

Preliminary conclusion

- The majority of Zhihu users attract followers by contributing a large number of high-quality answers
- Asking more questions cannot help attract more followers

Opinion leader identification

- What is opinion leader
 - Give their influential comments and opinions, put forward guiding ideas, agitate and guide the public to understand social problems[1]
- Define opinion leader in Zhihu
 - Give authoritative and influential answers,
 comments and other activities in some topic area
 - Play an important role in promoting formation and management of online public opinion and knowledge base

[1] Lazarsfeld, P.F., Berelson, B., Gaudet, H.: The People's Choice: How the Voter Makes up His Mind in a Presidential Campaign. New York: Columbia University Press, (1948)

Why to identify opinion leader

- Importance of opinion leader identification in Zhihu
 - Government: realize, guide and interfere public opinion on the internet
 - Marketing: influence customer opinions on products and services
 - Zhihu: invite them to attend public activities(e.g., editing, publication) to attract more users
 - Users: realize public opinion and authoritative knowledge, get specific answers efficiently

How to identify opinion leader

- Opinion leader identification is a ranking problem
 - PageRank, HITS
- Based on PageRank
 - An algorithm used by Google Search to rank websites in their search engine results

PageRank

 It works by counting the number and quality of links to a page to determine a rough estimate of how important the website is

How to identify opinion leader

- Extend PageRank through considering expertise authority in some specific topic
 - Form a directed graph with the users(nodes) and the "following" relationships among them
 - Choose a set of 8558 active users who publish at least 10 posts (Data reduction)
 - Calculate expertise authority in each topic for each node
 - Consider the number of answers and received votes for each user
 - Set link weight according to the expertise authority
 - The higher expertise authority the user has, the more important he is
 - Identify opinion leaders in each topic based on PageRank

Results

Topic #	Opinion leaders (Top 5)
0	anshi, chen-yao-39-75, a-xu-6, xiong-xiong-xiong-xiong-xiong-xiong, zhouyao
1	chen-yao-39-75, anshi, xiong-xiong-xiong-xiong-xiong-xiong, tan-hao-tommy, maji
2	chen-yao-39-75, anshi, polyhedron, ju-xuan-ya, yezhuang
3	xiong-xiong-xiong-xiong-xiong-xiong, maji, chen-yao-39-75, tan-hao-tommy, a-xu-6
4	chen-yao-39-75, a-xu-6, xiong-xiong-xiong-xiong-xiong-xiong-xiong, zhouyao, maji
5	chen-yao-39-75, baladi, yyss2037, yang-shuo, yuanxiafeel

Result analysis

- The results are reasonable
 - "chen-yao-39-75" is among the top-5 opinion leaders in all the six topics
 - He gives many answers and receives a large number of votes in each topic. He has the highest number of followers, including some influential ones like "tan-hao-tommy", "baladi"
 - o "anshi" is identified as an opinion leader in topic 0, topic 1, and topic 2
 - He mostly answers about these three topics and gets more than 10000 votes in these topics. He has the second highest number of followers, including "a-xu-6" and "yezhuang"
 - "polyhedron" is an opinion leader in topic 2
 - He often answers about topic 2. He has much fewer followers than "chen-yao-39-75" and "anshi" but has many influential followers in topic 2, including "anshi" and "ju-xuan-ya"

25

Course assignment

Course assignment

- Each group choose one topic (due next Tuesday)
 - Group size = 2 students
- Each group will show a demo (June 25th) (20%)
- Each group will give a final presentation (first two Fridays of July) (40%)
 - Comprehensive survey + final experiment results
- Each group will submit a final report (end of September) (40%)

Topic	Description	Dataset
Influential user	The project is to identify influential users	Twitter
identification	based on users' features	http://snap.stanford.edu/dat
		<u>a/egonets-Twitter.html</u>
Community	The project is to cluster different	Facebook
detection	communities based on topics	http://snap.stanford.edu/dat
		<u>a/egonets-Facebook.html</u>
Point-of-Interest	The project is to make point-of-	Gowalla
recommendation	interest(POI) recommendation based on	http://snap.stanford.edu/dat
	social influence and check-ins	<u>a/loc-gowalla.html</u>
Link prediction and	The project is to make friend	Brightkite
friend	recommendation based on social	http://snap.stanford.edu/dat
recommendation	networks and check-ins	<u>a/loc-brightkite.html</u>
Analysis of	The project is to give a detailed analysis	Social Evolution Dataset
individual activity	of individual activity and mobile pattern	http://realitycommons.medi
and mobile pattern	based on everyday life tracks.	a.mit.edu/socialevolution4.
		<u>html</u>

Course link:

https://wiki.net.informatik.uni-

goettingen.de/wiki/Advanced_Topics_in_Mobile_Communications_(AToMIC):_Social_

Network in Mobile Big Data (Summer 2016)

28

Topic	Literature		
Influential user	[1] Guille A, Hacid H, Favre C, et al. Information diffusion in online social networks: A		
identification	survey[J]. ACM SIGMOD Record, 2013, 42(2): 17-28.		
	[2] Weng J, Lim E P, Jiang J, et al. Twitterrank: finding topic-sensitive influential		
	twitterers[C]//Proceedings of the third ACM international conference on Web search and		
	data mining. ACM, 2010: 261-270.		
Community	[3] Xie J, Kelley S, Szymanski B K. Overlapping community detection in networks: The		
detection	state-of-the-art and comparative study[J]. Acm computing surveys (csur), 2013, 45(4): 43		
	[4] Du N, Wu B, Pei X, et al. Community detection in large-scale social		
	networks[C]//Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 workshop on Web		
	mining and social network analysis. ACM, 2007: 16-25.		
Point-of-Interest	[5] Wang H, Terrovitis M, Mamoulis N. Location recommendation in location-based social		
recommendation	n networks using user check-in data[C]//Proceedings of the 21st ACM SIGSPATIAL		
	International Conference on Advances in Geographic Information Systems. ACM, 2013:		
	374-383.		
	[6] Yuan Q, Cong G, Ma Z, et al. Time-aware point-of-interest		
	recommendation[C]//Proceedings of the 36th international ACM SIGIR conference on		
	Research and development in information retrieval. ACM, 2013: 363-372.		
Link prediction and	[7] Al Hasan M, Zaki M J. A survey of link prediction in social networks[M]//Social network		
friend	data analytics. Springer US, 2011: 243-275.		
recommendation	[8] Scellato, Salvatore, Anastasios Noulas, and Cecilia Mascolo. "Exploiting place feature		
	in link prediction on location-based social networks." 17th ACM SIGKDD. 2011.		
Analysis of	[9] Li N, Chen G. Analysis of a location-based social network[C]//Computational Science		
1	and Engineering, 2009. CSE'09. International Conference on. IEEE, 2009, 4: 263-270.		
and mobile pattern	[10] Sun, Yeran, and Ming Li. "Investigation of Travel and Activity Patterns Using Location		
	based Social Network Data: A Case Study of Active Mobile Social Media Users." ISPRS		
	International Journal of Geo-Information 4.3 (2015): 1512-1529.		

Thank you!

Email: Tao.Zhao@cs.uni-goettingen.de

