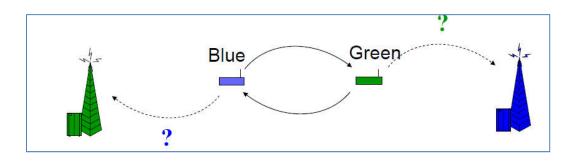
Advanced Computer Networks SS 2016

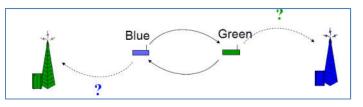

Xu Chen Humboldt Fellow

Institute of Computer Science University of Göttingen, Germany

Outline of Wireless Block

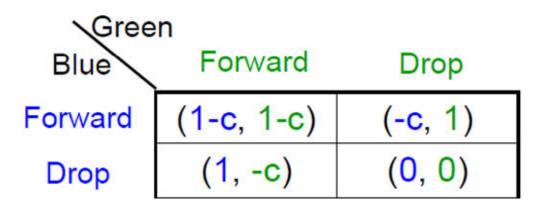
- Game theory and its applications
- Game theory basics and concepts
- Distributed Spectrum Sharing Application
- Social Group Maximization Framework
- Introduction to the framework
- Wireless Network Applications
- Mobile Data Offloading
- Basics and ideas
- Optimized Offloading Decision

Packet Forwarder's dilemma

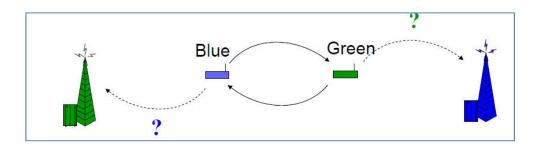

Forwarding has an energy cost of *c* (*c*<< 1) Successfully delivered packet: benefit of 1 for packet owner

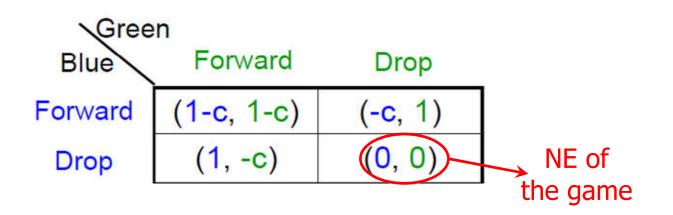
> If Green <u>drops</u> and Blue <u>forwards</u>: (1,-c) If Green forwards and Blue drops: (-c,1) If both forward: (1-c,1-c) If both drop: (0,0)

Each user is trying to selfishly maximize it's individual net gain


What can we predict?

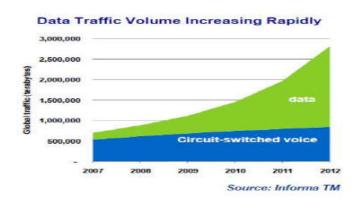
Packet Forwarder's dilemma




Game:

Players: Green, Blue Actions: Forward (F), Drop (D) Payoffs: (1-c,1-c), (0,0), (-c,1), (1,-c)

Packet Forwarder's dilemma



Sometimes being fully rational/selfish may lead to tragedy of commons!

Social Group Utility Maximization: From Non-Cooperative to Socially-Aware

Growing Wireless Data Traffic

Apple FaceTime Phone calls like you have never seen before !

Significant gap between demand and wireless capacity ...

- Cellular traffic has been growing exponentially, e.g., 230% increase in 2011.
 - Average smartphone data usage tripled in 2011;
 - These sharp increases are projected to continue in foreseeable future
- In July 2011, Credit Suisse reported that wireless base stations in US were operating at 80% of their maximum capacity during busy periods.

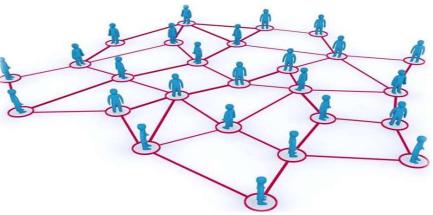
Major Advances in Wireless Communications

- MIMO (multi-antenna technology)
- OFDM (OFDMA)
- Turbo coding, LDPC
- Cooperative relaying
- Channel-aware scheduling (in 4G)
- Wireless network coding
- Cognitive radio networks
- .
- Research trends: towards exploiting interplay across technology, economics, social networks ...
- This part: a new paradigm on mobile social networking, making use of interplay between mobile communication and social structure

(in 3G/4G)

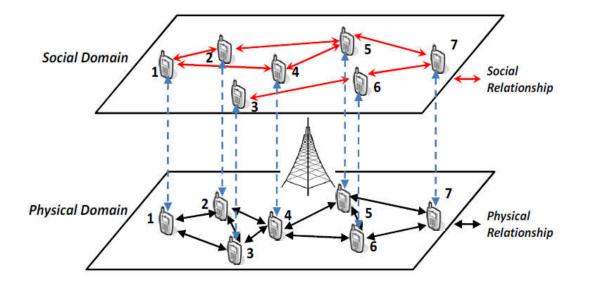
From Non-cooperative Game to Network Utility Maximization

- Non-cooperative game (NCG)
 - Each user is fully rational (selfish), aiming to maximize its individual utility
 - Widely applied to model strategic interaction among network entities
- Network utility maximization (NUM)
 - Users are altruistic, aiming at social welfare maximization
 - Extensively studied for network resource allocation
- NCG and NUM are two extreme cases: socially oblivious or fully social-ware


Question: What is between these two extremes?

Mobile Social Networking

- A new paradigm for mobile social networking; offer rich flexibility in modeling the continuum between NCG and NUM
 - Hand-held mobile devices are operated by human beings
 - People have diverse social relationships and care about their social neighbors at different levels (e.g., family, friends, acquaintances)
 - Explosive growth of online social networks opens up a new avenue to integrate social interactions for cooperative network design



Outline of Wireless II

- Social Group Utility Maximization Framework
- Random Access Control under SGUM
- Database-assisted Spectrum Access under SGUM

Social Network Overlays Mobile Network

- Physical-social coupling among mobile devices
 - Physical domain: physical coupling subject to physical relationship
 - Social domain: social coupling due to social ties among users

Physical Graph Model

- A set of wireless users N={1,2,...,n}
- Feasible strategy set X_i: User-specific, due to heterogeneous physical constraints, e.g., channel selection, power level selection
- Physical graph $G^p = \{N, E^p\}$
 - Two users are connected by a physical edge if they have physical coupling
 - Capture the physical relationships among the users, e.g., interference
 - \circ N_i^p : the set of users having physical coupling with user *i*
- Individual user utility $U_i(x)$
 - User's payoff under strategy profile x , e.g., achieved data rate or QoS requirement satisfaction
 - Depend on the underlying physical graph, e.g., interference graph

Social Graph Model

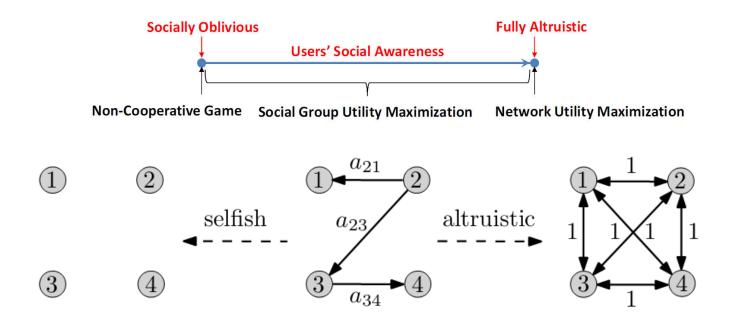
- Exploit social tie for enhancing mobile networking
 - Knowledge of human social ties can be leveraged, e.g., kinship, friendship, or colleague relationship
- Social graph G^s={N,E^s}
 - Two users are connected by a social edge if they have social tie
 - Capture the social coupling among the users
 - \circ N_i^s : user *i*'s social group, i.e., the set of users having social ties with it
 - a_{ij} : strength of the social tie from user *i* to user *j* with $0 \le a_{ij} \le 1$
- Social group utility

$$S_{i}(x) = U_{i}(x) + \sum_{j \in N_{i}^{S}} a_{ij} U_{j}(x)$$

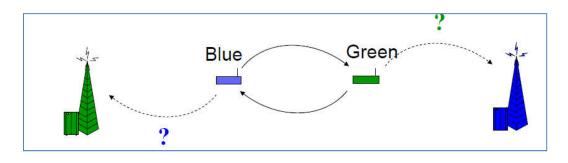
weighted sum of utilities of
User i's utility social neighbors of user i

 \circ Each user is social aware and cares about users having social tie with it

Social Group Utility Maximization Game


- Distributed decision making among users
 - Each user aims to maximize its own social group utility
- Social group utility maximization (SGUM) game
 - \circ N \rightarrow player set
 - X_i → strategy space of player *i*
 - ∘ $S_i(x)$ → payoff function of player *i*
- Social-aware Nash equilibrium (SNE)

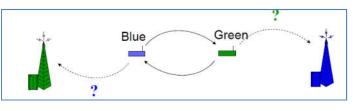
$$x_i^{SNE} = \operatorname*{argmax}_{x_i \in X_i} S_i(x_i, x_{-i}^{SNE}), \forall i \in N$$

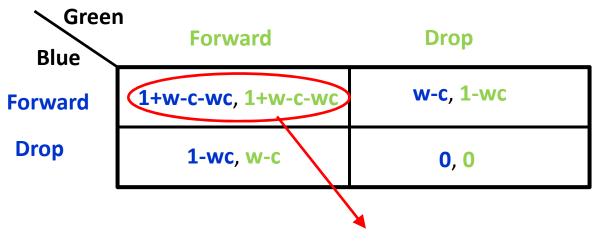

• $(x_1^{SNE}, ..., x_n^{SNE})$ is a SNE if no user can improve its social group utility by unilaterally changing its strategy

Social Group Utility Maximization Game

- SGUM provides rich modeling flexibility
 - If no social tie exists (i.e., $a_{ij} = 0, \forall i, j$), SGUM degenerates to NCG as $S_i(x_i, \mathbf{x}_{-i}) = u_i(x_i, \mathbf{x}_{-i})$
 - If all social ties have the maximum strength (i.e., $a_{ij} = 1, \forall i, j$), SGUM becomes NUM as $S_i(x_i, \mathbf{x}_{-i}) = \sum_{j=1}^n u_j(x_j, \mathbf{x}_{-j})$
 - Span the continuum space between NCG and NUM

Packet Forwarder's dilemma: Revisited




Forwarding has an energy cost of *c* (*c*<< 1) Successfully delivered packet: reward of 1 for packet owner

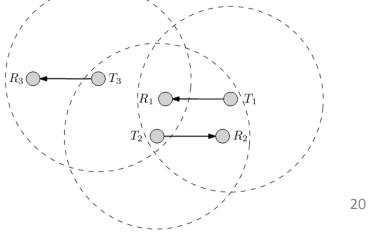
> If Green <u>drops</u> and Blue <u>forwards</u>: (1,-c) If Green forwards and Blue drops: (-c,1) If both forward: (1-c,1-c) If both drop: (0,0)

Suppose Blue and Green have a social tie of w

Packet Forwarder's dilemma: Revisited

If w>c, then (Forward, Forward) is social-aware NE!

A little social trust leads to efficient outcome!


Outline of Wireless II

- Social Group Utility Maximization Framework
- Random Access Control under SGUM
- Database-assisted Spectrum Access under SGUM

Random Access Control

- Protocol interference model
 - \circ Each user *i* is a link consisting of a transmitter T_i and a receiver R_i
 - \circ T_i causes interference to R_i if R_i is in the interference range of T_i
 - \circ I_i^+ : set of the receivers that T_i causes interference to
 - I_i^- : set of the transmitters that causes interference to R_i
- Random access control
- Each user *i* chooses access probability q_i to contend for data transmission
 - If multiple users contend, a collision occurs and no user can grab the transmission opportunity
 - *b_i*: successful contention probability
 of user *i*

$$b_i(q_i, \boldsymbol{q}_{-i}) = q_i \prod_{j \in \boldsymbol{I}_i^-} (1 - q_j)$$

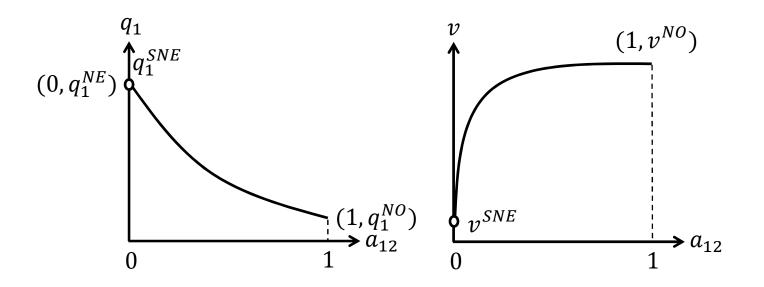
Random Access Control Game under SGUM

- Random access control game under SGUM: $G^R \triangleq \{\mathcal{N}, \{q_i\}, \{U_i\}\}$
 - Individual utility of user *i*: $U_i(q_i, \boldsymbol{q}_{-i}) = \log[\theta_i b_i(q_i, \boldsymbol{q}_{-i})] c_i q_i$
 - \circ θ_i : user *i*'s achieved data rate of utilizing the transmission opportunity
 - Log utility function: widely used to model utility of wireless users
 - \circ c_i : user *i*'s for channel contention, e.g., energy consumption
 - Social group utility of user *i*:

 $S_i(q_i, q_{-i}) = U_i(q_i, q_{-i}) + \sum_{j \in N_i^s} a_{ij} U_j(q_i, q_{-i})$

Random Access Control Game under SGUM

THEOREM: There exists a unique SNE $(q_1^{SNE}, ..., q_N^{SNE})$ in the random access control game under SGUM, and the access probability q_i^{SNE} is

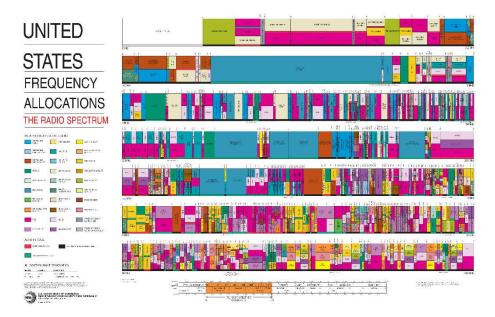

$$\frac{\sum_{j \in I_i^+} a_{ij} + 1 + c_i - \sqrt{(\sum_{j \in I_i^+} a_{ij} + 1 + c_i)^2 - 4c_i}}{2c_i}$$

- Each user's SNE strategy q_i^{SNE} decreases when its social ties with others increase
- When more friends are near by, user acts more altruistically

THEOREM: The total network utility $v = \sum_{i \in \mathcal{N}} U_i(q_i, q_{-i})$ at the SNE is increasing in $a_{ij}, \forall j \in I_i^+, \forall i \in \mathcal{N}$, and reaches maximum when $a_{ij} = 1, \forall j \in I_i^+, \forall i \in \mathcal{N}$.

Random Access Control Game under SGUM

Intuition: As the social tie strengths increase from 0s to 1s, the SNE strategy
of each user migrates from the NE strategy of a NCG to the optimal strategy
for NUM ⇒ SGUM spans the continuum space between NCG and NUM

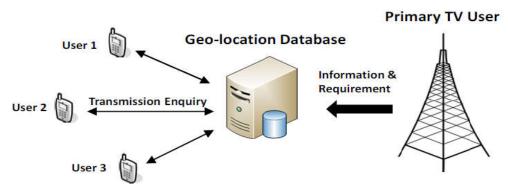


• An example of two-user game with $a_{21} = 1$

Outline of Wireless II

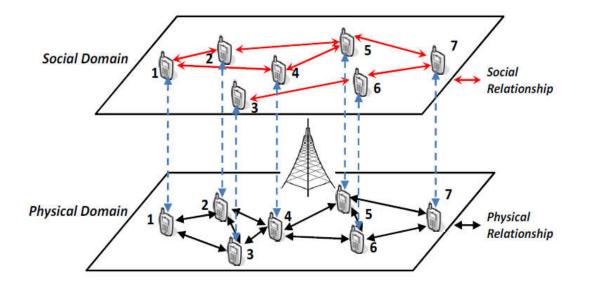
- Social Group Utility Maximization Framework
- Random Access Control under SGUM
- Database-assisted Spectrum Access under SGUM

- Spectrum is scarce
 - Most spectrums have been exclusively licensed
 - More and more wireless devices emerge



- Spectrum is under-utilized
 - $_{\odot}~$ E.g., average spectrum utilization in Chicago is lower than 20%

- Dynamic spectrum access with cognitive radios
 - $\circ~$ Address spectrum under-utilization problem
 - Primary user (PU) -- licensed spectrum holder
 - Secondary user (SU) -- unlicensed spectrum user
 - $_{\odot}~$ Enable SUs share the spectrum with PUs



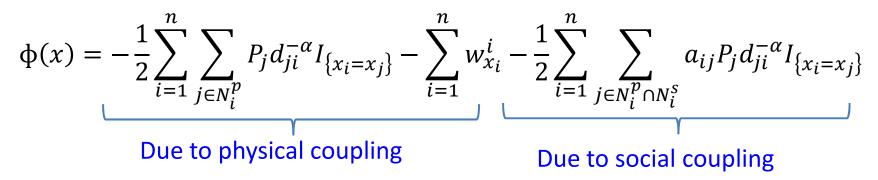
- FCC recent ruling on TV spectrum utilization
 - White-space users determine spectrum availability via Geo-location database
 - User sends its geo-location information to database
 - o Database feedbacks vacant channel sets and allowable power level
 - Obviate the need of spectrum sensing by individual users

- Challenges for achieving efficient shared spectrum access
 - $_{\circ}~$ Access the same vacant channel \rightarrow cause severe interference
 - Effective cooperation stimulation for spectrum access is needed

Social Group Utility Maximization

- Physical-social coupling among white-space users
 - Physical domain: physical coupling subject to interference
 - Social domain: social coupling due to social ties among users

- A set of white-space users N={1,2,...,n}
- Vacant channel set X_i
 - User-specific by consulting the database
- Physical graph $G^p = \{N, E^p\}$
 - o Two users are connected by a physical edge → they can generate significant interference to each other
- Individual user utility


$$U_{i}(x) = -\sum_{j \in N_{i}^{p}} P_{j} d_{ji}^{-\alpha} I_{\{x_{i} = x_{j}\}} - w_{x_{i}}^{i}$$

Each user aims to reduce its received interference

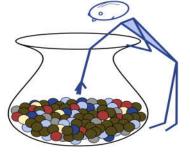
• Social group utility

$$S_i(x) = U_i(x) + \sum_{j \in N_i^s} a_{ij} U_j(x)$$

- SGUM game for database assisted spectrum access
 - Stimulate effective cooperation for interference mitigation
- Potential game: if the game has a potential function $\phi(x)$ such that $S_i(x_i, x_{-i}) S_i(y_i, x_{-i}) = \phi(x_i, x_{-i}) \phi(y_i, x_{-i})$
 - Property: any strategy that maximizes potential function is a Nash equilibrium
- Potential function of the game

THEOREM: Social group utility maximization game for database assisted spectrum access is a potential game and always admits a SNE.

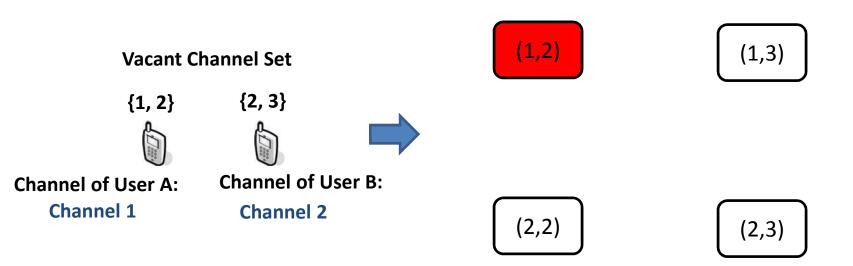
- Distributed algorithm for social group utility maximization (SGUM)
 - Inspired by adaptive CSMA for network utility maximization [Jiang'2010]
 - Key idea: coordinate users' asynchronous channel selection updates to form a Markov chain, and drive it to the stationary distribution given as Gibbs distribution, which maximizes potential function of the SGUM game


- Each user *i* repeats following operations in parallel:
 - Compute the social group utility $S_i(x_i, x_{-i})$ on the chosen channel x_i by inquiring the individual utility information from social neighbors

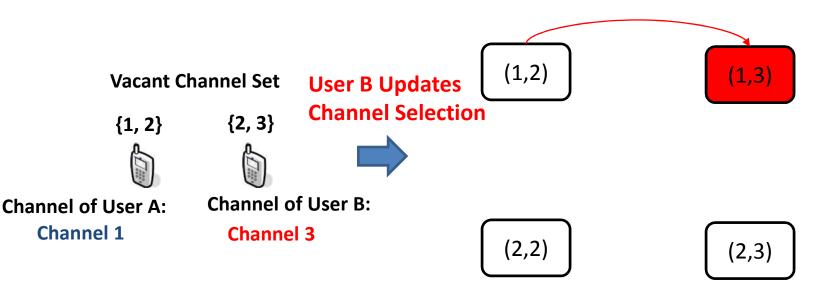
- Generate a timer value following the exponential distribution
- Count down until the timer expires

- Each user *i* repeats following operations in parallel:
 - \circ Once the timer expires, choose a new channel y_i randomly

- Compute the social group utility $S_i(y_i, x_{-i})$ on the new channel y_i
- Decision update: stay in the new channel y_i with probability

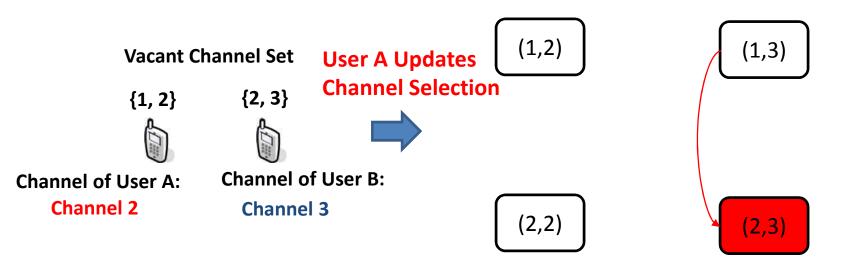

$$Q \triangleq \frac{\exp(\theta S_i(y_i, x_{-i}))}{\max\{\exp(\theta S_i(y_i, x_{-i})), \exp(\theta S_i(x_i, x_{-i}))\}}$$

or move back to the original channel x_i with probability 1 - Q

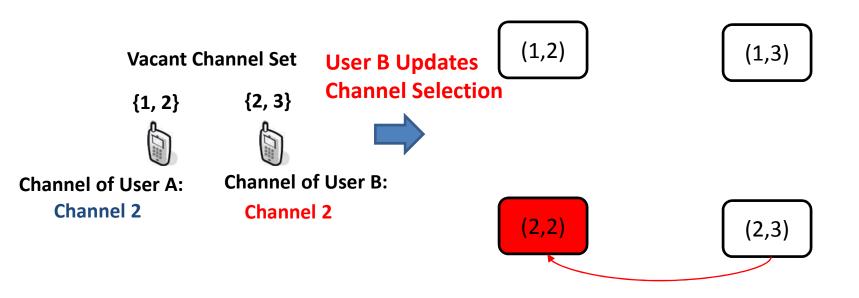


- The distributed algorithm induces a Markov chain
 - System state: the channel selection profile of all users
 - Each state transition involves one user: due to the property of exponential distribution for channel update count-down
 - Two-user Markrov chain example:

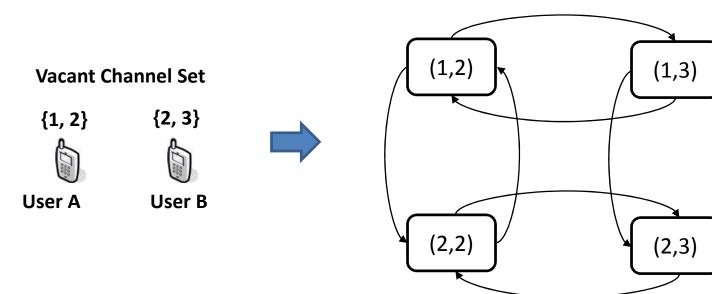
Markov Chain For Dynamic Channel Selection


- The distributed algorithm induces a Markov chain
 - System state: the channel selection profile of all users
 - Each state transition involves one user: due to the property of exponential distribution for channel update count-down
 - Two-user Markov chain example:

Markov Chain For Dynamic Channel Selection


- The distributed algorithm induces a Markov chain
 - System state: the channel selection profile of all users
 - Each state transition involves one user: due to the property of exponential distribution for channel update count-down
 - Two-user Markov chain example:

Markov Chain For Dynamic Channel Selection



- The distributed algorithm induces a Markov chain
 - System state: the channel selection profile of all users
 - Each state transition involves one user: due to the property of exponential distribution for channel update count-down
 - Two-user Markov chain example:

Markov Chain For Dynamic Channel Selection

- The distributed algorithm induces a Markov chain
 - System state: the channel selection profile of all users
 - Each state transition involves one user: due to the property of exponential distribution for channel update count-down
 - Two-user Markov chain example: diagram of all feasible state transitions

Markov Chain For Dynamic Channel Selection

- The distributed algorithm induces a Markov chain
 - System state: the channel selection profile of all users
 - Each state transition involves one user: due to the property of exponential distribution for channel update count-down
 - Two-user Markov chain example

THEOREM: The distributed spectrum access algorithm induces a timereversible Markov chain with the unique stationary distribution given as $q_x^* = \frac{\exp(\theta \Phi(x))}{\sum_y \exp(\theta \Phi(y))}$

• As $\theta \to \infty$, the SNE $x^{SNE} = \underset{x}{\operatorname{argmax}} \varphi(x)$ can be achieved

- Performance gap from social optimal solution
 - $V(x) = \sum_{i=1}^{n} U_i(x)$ denotes the total individual utility of all users
 - $V^* = \max_{x} V(x)$ denotes the maximum network utility
 - $\rho = V^* V(x^{SNE})$ denotes the performance gap by distributed spectrum access algorithm

THEOREM: The performance gap ρ of the SNE by distributed spectrum access algorithm is at most

$$\frac{1}{2}\sum_{i=1}^{n}\sum_{j\in N_{i}^{p}\cap N_{i}^{s}}(1-a_{ij})P_{j}d_{ji}^{-\alpha}+\frac{1}{2}\sum_{i=1}^{n}\sum_{j\in N_{i}^{p}\setminus N_{i}^{p}\cap N_{i}^{s}}P_{j}d_{ji}^{-\alpha}$$

- ρ decreases as the social tie strength a_{ij} increases
- $\rho = 0$ when all users are altruistic, i.e., $a_{ij} = 1, \forall i, j$

Convergence v.s. Performance

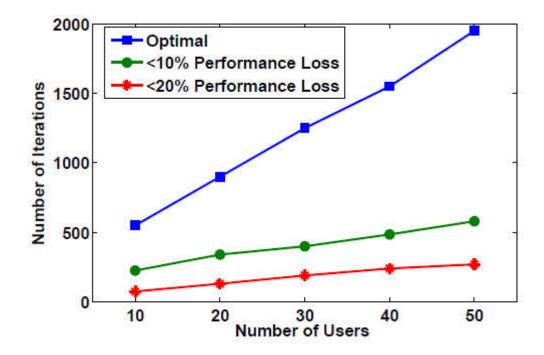
- In practice, convergence time could be a key concern
 - Can we significantly reduce the convergence time at the cost of small performance loss?
- The convergence time can be exponentially reduced by setting a smaller θ

THEOREM: The convergence time of the distributed spectrum access algorithm is bounded by

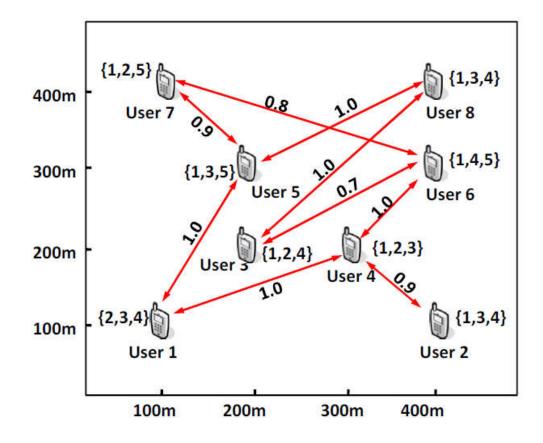
 $K_1\theta\exp(K_2\theta)$,

where K_1 , K_2 are constants.

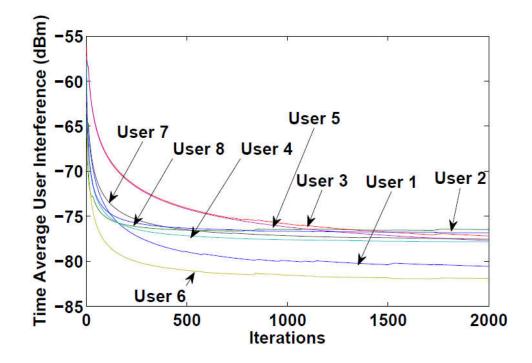
• The performance loss of setting a smaller θ is insignificant


THEOREM: For the distributed spectrum access algorithm with a finite θ , its performance loss from the SNE (i.e., $\theta \to \infty$) is bounded by

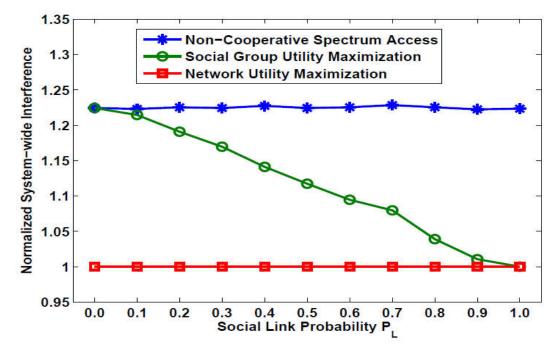
$$\frac{1}{\theta} \sum_{n=1}^{N} \ln M_n \,,$$


where M_n is the number of vacant channels of user n.

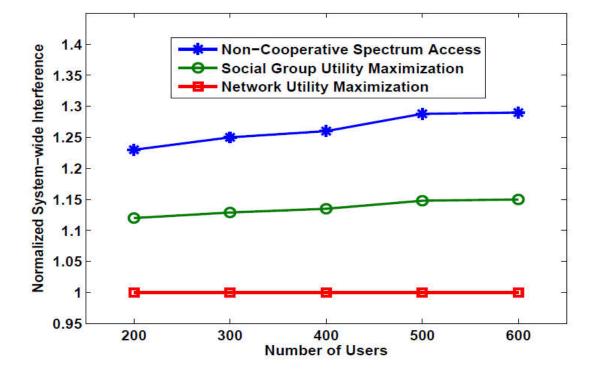
Convergence v.s. Performance


- In practice, convergence time could be a key concern
 - Can we significantly reduce the convergence time at the cost of small performance loss?

- N=8 users randomly scatter over a square area
- Social graph is represented by red edges



- N=8 users randomly scatter over a square area
- Social graph is represented by red edges


• Distributed spectrum access algorithm can drive users' time average interference decreasing

- N=100 users randomly scatter over a square area
- Social graph is represented by Erdos-Renyi random graph
 - \circ There exists a social link between two users with a probability P_L

- Performance improves as the social link density increases
- Span the continuum space between NCG and NUM

- Users randomly scatter over a square area
- Social graph is based on real data trace: friendship networks of Brightkite

• Performance gap, compared with NUM, is at most 15%.

Summary

- Introducing Social Awareness into Networking
 - Developed social group utility maximization (SGUM) framework, which offers rich modeling flexibility and bridges the gap between noncooperative game and network utility maximization, two traditionally disjoint paradigms
 - Studied SGUM applications in random access control and databaseassisted spectrum access, and quantify the impact of social ties on networking

Summary

- Future work
 - Study SGUM for more applications and investigate the impact of negative social ties (e.g., malicious user)

