Theses and Projects: Difference between revisions

From NET Wiki
Jump to navigation Jump to search
No edit summary
 
(113 intermediate revisions by 10 users not shown)
Line 1: Line 1:
== An introduction to the Computer Networks group ==
== An introduction to the Computer Networks group ==


See a [https://wiki.net.informatik.uni-goettingen.de/w/images/5/5a/NETGroup_Poster-Jan2021.pdf poster] for a general overview, an [http://www.net.informatik.uni-goettingen.de/?q=research anchor] to our research activities, or the  
See a [https://wiki.net.informatik.uni-goettingen.de/w/images/5/5a/NETGroup_Poster-Jan2021.pdf poster] for a general overview, an [http://www.net.informatik.uni-goettingen.de/?q=research anchor] to our research activities, a list of [https://wiki.net.informatik.uni-goettingen.de/w/images/a/a3/Social_Computing_publications.pdf social computing related] or networking-related publications, and the  
[http://www.net.informatik.uni-goettingen.de/?q=news/annual-report-2020-best-wishes-2021 annual report(s)] for our recent activities.
[http://www.net.informatik.uni-goettingen.de/?q=news/annual-report-2020-best-wishes-2021 annual report(s)] for our recent activities.
== Joint PhD Program with University of Sydney ==
From September 2024 on there will be the possibility to start a joint PhD with the University of Sydney (Australia). PhD students will stay in both Göttingen and Sydney for at least one year and can achieve two PhD degrees.
For more information, please contact Prof. Xiaoming Fu [fu@cs.uni-goettingen.de].
In November/December 2023, Fabian visited research groups in Melbourne and Sydney. Impressions of his visit can be seen here: [[Media:australia.pdf | pdf]]


== Open Theses and Student Project Topics ==
== Open Theses and Student Project Topics ==
Line 13: Line 22:




===  * '''New!''' Efficient Live Volumetric Video Streaming System===
The exponential growth of digital data and multimedia content necessitates robust and efficient systems to handle the streaming of high-resolution, three-dimensional volumetric videos. These videos offer a more immersive and realistic experience, making them increasingly used in various sectors such as virtual reality, augmented reality, and entertainment. The challenge here lies in creating a system that can handle the high-bandwidth and computation-intensive demands of live volumetric video streaming while ensuring the delivery of a seamless and high-quality user experience. This project conceptualizes the development and optimization of efficient algorithms and systems to handle volumetric video streams, mitigating bandwidth cost and latency issues. We expect you to have a background in video streaming technologies, computer vision, and programming skills.
Please contact Yanlong Huang[yanlong.huang@cs.uni-goettingen.de]
===  * '''New!''' Edge-Cloud Orchestration for LiDAR-based Traffic Analysis===
The imminent era of smart cities and autonomous vehicles paves the way for the deployment and operation of advanced monitoring and processing systems. Among these, LiDAR technology stands out for its ability to provide high-resolution, three-dimensional traffic data, becoming an essential component for efficient traffic analysis and management. However, the computation-intensive and latency-sensitive nature of LiDAR data processing poses significant challenges and dictates the need for efficient orchestration between edge and cloud computing resources. Edge-Cloud Orchestration offers an innovative solution to this problem by bridging the gap between these two technologies, enabling the low-latency processing of complex LiDAR data. It would be good if you have a background in point cloud processing/cloud computing, K8s, and programming skills.
Please contact Yanlong Huang[yanlong.huang@cs.uni-goettingen.de]
===  * '''New!''' Blockchain-based Spectrum and Computation Resources Sharing in Mobile Networks===
The sixth-generation (6G) system is widely envisioned as a global network consisting of pervasive devices that interact with each other. Besides exchanging information, these peer entities also share heterogeneous and distributed network resources. Blockchain is a promising technology to secure resource sharing in a peer-to-peer way. We need students for this topic. We expect you have a background in computer network and programming skills in Python.
Please contact Jin Xie [jin.xie@stud.uni-goettingen.de]
===  * '''New!''' Using LLM for Sentiment Knowledge Graph Construction (B/M/P)===
Constructing a sentiment knowledge graph using Large Language Models (LLMs) like ChatGPT involves leveraging the model's capabilities to understand and analyze textual data, extract entities and relationships, perform sentiment analysis, and organize the information into a graph structure.  We need students for this topic. We expect you have a background in knowledge graph and programming skills in Python.
Please contact Wenfang Wu [wenfang.wu@cs.uni-goettingen.de]
===  * '''New!''' Using LLM for Knowledge Graph Completion (B/M/P)===
Large language models (LLMs), such as ChatGPT and GPT-4 (OpenAI, 2023), have extensive internal knowledge repositories from their vast pretraining corpora, which can be used as an extra knowledge base to alleviate information scarcity for the long-tail entities in Knowledge Graphs. However, there is no effective workflow design for LLM on KGC tasks. How to leverage the LLM to perform reasoning on the KG Completion (KGC) task is a noteworthy and significant topic. We need students for this topic. We expect you to have a background in knowledge graph and LLMs, you'd better have a programming skill in Python.
Please contact Tong Shen [shen.tong@cs.uni-goettingen.de]
===  * '''New!''' Tree Growth Detection using Satellite Images and Computer Vision Methods (B/M/P) ===
A tree planting project in Madagascar was initiated several years ago. The outcomes of this project shall now be evaluated by analyzing satellite images of the study area with Computer Vision methods. In a first step, very high resolution (VHR) satellite images from 2023 with a resolution of 0.5m will be used to identify trees with object detection / semantic segmentation. In the next step a lower resolution (5m) satellite image time series starting in 2015 will be used for change detection to identify, in which locations the project was  (un)successful.
Please contact Fabian Wölk [fabian.woelk@cs.uni-goettingen.de]
===  * '''New!''' Emotional Support Conversation Generation based on LLM (B/M/P)===
Emotional support conversation aims to reduce individuals' emotional distress through social interaction and help them understand and cope with the challenges they face. Using LLM to provide emotional support is a promising technology which can be used in customer service chats, mental health support and so on. We need students for this topic. We expect you have a background in dialogue generation and programming skills in Python.
Please contact Jing Li [jing.li@cs.uni-goettingen.de]
===  * '''New!''' Rumor control and detection method for social networks based on GCN===
In social networks, rumors spread quickly and have a wide impact. Through GCN, the complex relationships between nodes in the network can be effectively captured, and the detection and propagation paths of rumors can be modeled and controlled. The core of this method is to improve the ability to identify and control the spread of rumors by jointly learning user behavior, information content, and network topology by building an information propagation graph. We need students in this topic. We expect you have a background in rumor detection and programming skills in Python.
Please contact Fei Gao [fei.gao@cs.uni-goettingen.de]
===  [Occupied]  Image-to-Image Translation of Different Nightlight Image Types (B/M/P) ===
Nightlight intensities have been proven to be a good indicator for socio-economic status. However, for long-term temporal analyses their use can be challenging, as different satellites for sensing nightlight intensities operated at different times (DMSP OLS 1992-2014 and VIIRS 2012-2023). Both types differ not only in resolution, but there is also a big discrepancy in the optical appearance and value ranges. To obtain consistent nightlight images for temporal analysis, Image-to-Image Translation methods shall be used in this project/thesis for the conversion between both types. Finally the performance of the translated and original nightlight images for a regression on socio-economic indicators shall be evaluated.
Please contact Fabian Wölk [fabian.woelk@cs.uni-goettingen.de]
===  [Occupied] Satellite Image Indices and Machine Learning for Socio-economic Estimation (B/M/P) ===
There are several indices, which can be derived from satellite images. For example the Normalized Difference Vegetation Index (NDVI) indicates the presence and condition of vegetation, while the Normalized Difference Built-up Index (NDBI) indicates the presence of built-up areas such as buildings or roads. The distributions of these and other indices may have different explanatory power to estimate the socio-economic status of locations. Therefore in this project/thesis the regression performance of machine learning models - using statistics of these indices as features - to estimate socio-economic indicators shall be evaluated for the individual and also combined indices. Optionally, Convolutional Neural Networks (CNNs) can be applied additionally, which take the derived index images as input.
Please contact Fabian Wölk [fabian.woelk@cs.uni-goettingen.de]
===  * 3D natural hazard simulator  ===
The aim of the project is to simulate representative natural hazards for hazard response, such as flooding and forest fire. A natural hazard response simulator will be implemented for both visualization and performance validation. For example, we can visualize the flooding of 2021 in Germany, and then validate the performance of drone deployment in hazard sensing and emergency communication. Here, we introduce some related works in virtual 3D scene which may help you to understand this project, e.g., Agents Toolkit (ML-Agents) [1], DisasterSim [2] and Airsim [3].
[1] Unity Technologies.Unity ML-Agents Toolkit. Jan 26, 2021.URL:https://github.com/Unity-Technologies/ml-agents. (accessed: 21.11.2021)
[2] Wang, H., Liu, C. H., Dai, Z., Tang, J., & Wang, G. (2021, August). Energy-efficient 3D vehicular crowdsourcing for disaster response by distributed deep reinforcement learning. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining (pp. 3679-3687).
[3] S. Shah, D. Dey, C. Lovett, and A. Kapoor. “Airsim: High-fidelity visual and physical simulation forautonomous vehicles”. In:Field and Service Robotics. Springer. 2018, pp. 621–635.


Please contact  Prof. Xiaoming Fu [fu@cs.uni-goettingen.de](B/M/P)


=== Assessing city livability with big data ===
=== * '''[Occupied]''' OCR (Optical Character Recognition) and Annotation Transfer ===


* '''New!''' City livability is related to a number of factors, such as quality of life, job satisfaction, environment (green space, CO2/PM2.5, schooling/health support etc), policy, commuting time, entertainment. We utilize different data sources to understand their relation to the city livability, and analyze the coherent features which offer an evaluation framework for a city's attractiveness and livability for different types of citizens. We expect you have some statistics and machine learning background, as well as programming skills like Python.
The aim of the project is to develop a tool/software that can convert a printed paper with annotations and text into electronic versions with text highlighting and annotations. The successful candidate will be responsible for developing this tool/software that can perform the following tasks:


Please contact Prof. Xiaoming Fu (B/M/P).
1. Text Alignment: Develop algorithms to align the text in the electronic version with the original printed paper.
 
2. Annotation Recognition: Develop software that can recognize annotation areas in the printed paper and transfer them to the electronic version.
 
3. Transfer Annotations: Transfer annotations and highlighting from the paper-based article to the electronic version.
 
[1] https://medium.com/analytics-vidhya/opencv-perspective-transformation-9edffefb2143
 
[2] https://developer.adobe.com/analytics-apis/docs/2.0/guides/endpoints/annotations/
 
[3] https://developer.adobe.com/document-services/apis/pdf-services/
 
[4] https://www.cameralyze.co/blog/how-can-i-detect-lines-in-images-or-pdfs
 
Please contact Dr. Tingting Yuan [tingting.yuan@cs.uni-goettingen.de]] (B/M/P)
 
===  *  Privacy-preserved Video Analytics===
This project/thesis topic focuses on the protection of privacy in video analytics.
 
The project involves three key tasks:
 
1) Implementation of a system utilizing YOLO and CycleGANs/DataGen for video analysis and processing. The code for this is already available for use.
 
2) Development of a privacy protection mechanism by adjusting the level of blur applied to the video, taking into account a trade-off between inference accuracy (e.g., detection by YOLO) and the level of privacy protection.
 
3) Optimize the blur level for Pan-tilt-zoom cameras to ensure that the system effectively captures key visual information while still preserving privacy.
 
Please contact Dr. Tingting Yuan [tingting.yuan@cs.uni-goettingen.de] (B/M/P)
 
[1] Pecam: privacy-enhanced video streaming and analytics via securely-reversible transformation [https://dl.acm.org/doi/abs/10.1145/3447993.3448618].
 
===  *  AI for networking adaption  ===
In this project/theses topic, you will explore how to make AI meets networking requirements (e.g., fluctuating network states).
You will (1) deploy and test Genet[1]; (2)extend the Genet environment to multi-client environment (e.g., ABR); (3) deploy multi-agent algorithms on Genet and valid the performance.
 
[1] Genet: Automatic Curriculum Generation for Learning Adaptation in Networking [https://francisyyan.org/documents/fyy-genet-sigcomm22.pdf]
 
Please contact Dr. Tingting Yuan [tingting.yuan@cs.uni-goettingen.de]] (B/M/P)
 
=== * [Occupied] Video analytics with deep reinforcement learning ===
 
The proliferation of video analytics is facilitated by the advances of deep learning and the low prices of high-resolution network-connected cameras. However, the accuracy improvement from deep learning is at the high computational cost. Although the state-of-the-art smart cameras can support deep learning method, the deployed surveillance and traffic camera paint a much bleaker resource picture. For example, DNNCam that ships with a high-end embedded NVIDIA TX2 GPU costs more than $2000 while the price of deployed traffic cameras today ranges $40-$200; these cameras typically loaded with a single-core CPU only provide very scarce compute resource. Because of this huge gap, typical video analytics applications, e.g., traffic cameras stream live video to remote server for further analysis.
As a result, a natural question occurs: which video streaming configuration also server decoding configuration should we select to guarantee high analysis accuracy as well as not incur network congestion? To answer this question, we attempt to explore the performance of deep reinforcement learning under this scenario.


=== Socioeconomic analysis on commuters ===
Please contact Dr. Tingting Yuan [tingting.yuan@cs.uni-goettingen.de], Weijun Wang [weijun.wang@informatik.uni-goettingen.de] (B/M/P)


* '''New!''' Understanding the commuter behaviour and the factors that lead to commuting are more important today than ever before. With steadily increasing commuter numbers, the commuter traffic can be a major bottleneck for many cities. The increasing awareness of a good work-life balance leads to more people wanting shorter commuting distances. The commuter behaviour consequently plays an increasingly important role in city and transport planning and policy making. This topic aims to infer knowledge from commuter data, analyzing the influence of GDP, housing prices, family situation, income and job market on the decision to commute. We expect you have some statistics and machine learning background, as well as programming skills like Python.
=== * [Occupied] AI for Games  ===


Please contact Prof. Xiaoming Fu (B/M/P)
Can Artificial intelligence (AI) beat humans at games?
AI has played an increasingly prominent and productive role in the gaming world. Implemented in many different ways, AI is used to improve game behaviors and environments.
In this project, we will design AI algorithms (i.e., multi-agent reinforcement learning) for games (e.g., StarCraft: https://github.com/oxwhirl/smac). The main challenge here is to coordinate agents in achieving joint goals (i.e., win), such as by efficient communication.


[1]https://www.nature.com/articles/d41586-019-03298-6


=== Socioeconomic Status and Internet Language Usage ===
Please contact Dr. Tingting Yuan [tingting.yuan@cs.uni-goettingen.de] (B/M/P)


* '''New!''' Numerous people write social media posts and exchange messages with colleagues, friends, acquaintances or even strangers on different platforms. We would like to understand how the underlying social class membership (socioeconomic status) affects Internet users' language use, by investigating the sociolinguistic features in users' posts/messages across a multitude of datasets and their relationship to their socioeconomic status. We expect you have some statistics and textual analysis/natural language processing background, as well as programming skills like Python.
=== * '''[Closed]''' Socioecomonic analysis based on spatiotemporal and linguistic analysis on microblogging data ===


Please contact Prof. Xiaoming Fu (B/M/P)
Identifying the socioeconomic status (SES) of users in social media like Twitter or Weibo is useful e.g., for digitized advertisements and social policies. This study aims to collect profiles of Twitter users on selected topics such as culture or foreign language learning, extract the temporal, spatial and linguistic features, and compare different classification algorithms (e.g., decision tree, random forest, na\"{i}ve Bayes, deep learning, and Gaussian processes classifier) to predict the socioeconomic status.


=== Low Power, Wide Area (LPWA) technologies on smart cities===
[1] Ren Y, Xia T, Li Y, Chen X. Predicting socio-economic levels of urban regions via offline and online indicators. PLoS One. 2019;14(7):e0219058. Published 2019 Jul 10. doi:10.1371/journal.pone.0219058
[2] Pappalardo L, Pedreschi D, Smoreda Z, Giannotti F. Using Big Data to study the link between human mobility and socio-economic development. In: IEEE International Conference on Big Data 2015. doi:10.1109/BigData.2015.7363835
[3] Vasileios Lampos, Nikolaos Aletras, Jens K. Geyti, Bin Zou and Ingemar J. Cox (2016). Inferring the Socioeconomic Status of Social Media Users based on Behaviour and Language. Proceedings of the 38th European Conference on Information Retrieval (ECIR '16), pp. 689-695. doi:10.1007/978-3-319-30671-1_54


* '''New!'''The LoRaWAN specification is a Low Power, Wide Area (LPWA) networking protocol, which is attracting a lot of attention due to their ability to offer affordable connectivity to the low-power devices distributed over very large geographical areas. In this project, we plan to exploit the LoRaWAN technologies to improve the performance of applications in smart cities. More details can be found in this [https://ieeexplore.ieee.org/abstract/document/7815384?casa_token=c3-nAktQO-AAAAAA:EHmi8hFe-HL853Kwq8Kot-mi8KPNSahLRT-4Tp0O8pdaT0mVH_DKUYPGU9onF227eKhpPPyC1436kw link] Please contact [http://134.76.18.81/?q=people/dr-yali-yuan Yali Yuan] (B/M/P)
Please contact  Prof. Xiaoming Fu [fu@cs.uni-goettingen.de](B/M/P)


=== Machine Learning & deep learning on electronic healthcare records===
=== [Closed] Super resolution technique for efficient video delivery ===


In recent years, large amounts of health data, such as patient Electronic Health Records (EHR), are becoming readily available. This provides an unprecedented opportunity for knowledge discovery and data mining algorithms to dig insights from them, which can, later on, be helpful to the improvement of the quality of care delivery. This project will be mainly on using machine learning to analyze electronic healthcare dataset.  Please contact [http://www.net.informatik.uni-goettingen.de/?q=people/yachao-shao Yachao Shao] (B/M/P)
Super-resolution (SR) is one of the fundamental tasks in Computer vision. Video delivery on Internet or in WAN is important for various applications, eg., video analytics and video viewing. This project attempts to explore the potential of SR for video delivery. We expect you have Data Science and Computer Vision background, as well as programming skills like Python.


Please contact Weijun Wang [weijun.wang@informatik.uni-goettingen.de] (B/M/P)


=== Machine Learning or Deep learning Method (Graph-based) on Recommending system or Network Traffic ===
=== [closed]  Assessing city livability with big data ===


This project will be provide students an opportunity to learn how to use machine learning or deep learning methods (espeically graph-based DL method) to solve problems in recommending systems or computer networks. The requirements include: 1) like (python) coding; 2) willing to learn DL knowledge; 3) willing to read and learn open source projects;4) Regular meeting and discussion via skype and email. Please contact [sding@cs.uni-goettingen.de Shichang Ding](B/M/P)
* City livability is related to a number of factors, such as quality of life, job satisfaction, environment (green space, CO2/PM2.5, schooling/health support etc), policy, commuting time, entertainment. We utilize different data sources to understand their relation to the city livability, and analyze the coherent features which offer an evaluation framework for a city's attractiveness and livability for different types of citizens. We expect you have some statistics and machine learning background, as well as programming skills like Python.


===Machine Learning for Security and Privacy in Networks ===
Please contact Prof. Xiaoming Fu (B/M/P).
==== QUIC protocol design for video streaming analysis. (B/M/P, at least familiar with one programming language). Please contact [http://134.76.18.81/?q=people/dr-yali-yuan Yali Yuan] (Assigned to Yuhan Wang and Pronaya Prosun Das)


==== Implement algorithms for improving the network anomaly detection. (B/M/P, at least familiar with one programming language). Please contact [http://134.76.18.81/?q=people/dr-yali-yuan Yali Yuan]
=== Socioeconomic analysis on commuters ===


==== Implement algorithms for improving the privacy of vehicle communications. (B/M/P, at least familiar with one programming language). Please contact [http://134.76.18.81/?q=people/dr-yali-yuan Yali Yuan]
* '''New!''' Understanding the commuter behaviour and the factors that lead to commuting are more important today than ever before. With steadily increasing commuter numbers, the commuter traffic can be a major bottleneck for many cities. The increasing awareness of a good work-life balance leads to more people wanting shorter commuting distances. The commuter behaviour consequently plays an increasingly important role in city and transport planning and policy making. This topic aims to infer knowledge from commuter data, analyzing the influence of GDP, housing prices, family situation, income and job market on the decision to commute. We expect you have some statistics and machine learning background, as well as programming skills like Python.


==== '''New!''' Privacy preservation for federated learning. (B/M/P, at least familiar with one programming language). Please contact Dr. Yali Yuan.
Please contact Prof. Xiaoming Fu (B/M/P)




<!--foo
=== Socioeconomic Status and Internet Language Usage ===
=== Information Centric Networking (ICN) ===
 
* ICN over GTS: exploit Geant Testbed Service to build configurable ICN testbeds (B/M/P) ([http://www.net.informatik.uni-goettingen.de/people/jacopo_de%20benedetto Jacopo De Benedetto])
* '''New!''' Numerous people write social media posts and exchange messages with colleagues, friends, acquaintances or even strangers on different platforms. We would like to understand how the underlying social class membership (socioeconomic status) affects Internet users' language use, by investigating the sociolinguistic features in users' posts/messages across a multitude of datasets and their relationship to their socioeconomic status. We expect you have some statistics and textual analysis/natural language processing background, as well as programming skills like Python.
* ICNProSe: ICN-based Proximity Discovery Services (B/M/P) ([http://www.net.informatik.uni-goettingen.de/people/jacopo_de%20benedetto Jacopo De Benedetto])
 
Please contact Prof. Xiaoming Fu (B/M/P)
 
 
===[closed]  Multimedia Resource Allocation for QoE Improvement by Deep Learning===
 
* Deep learning has been widely used in various real-time applications and systems. Dynamic resource allocation for multimedia (e.g. Video) to improve QoE is an interesting topic. We need three students for this topic.  We expect you have a background in deep learning and computer network, as well as programming skills like Python and Go.


-->
(1) one to realize and improve the system for video transmission and network configuration according to resource allocation policy;
* You will use QUIC [https://github.com/lucas-clemente/quic-go] protocol (Go language) to implement network allocation and place the server part on AWS/other clouds.
(2) one to implement the deep learning algorithm to design the controller for dynamic resource allocations.


== Ongoing Topics ==
(3) one student for the QoE model using deep learning.


{| align="center" class="wikitable sortable" {{Prettytable}}
Please contact  Dr.Tingting Yuan [tingting.yuan@cs.uni-goettingen.de ] and Weijun Wang [weijun.wang@informatik.uni-goettingen.de](B/M/P)
|-
|{{Hl2}} |'''Topic'''
|{{Hl2}} |'''Topic advisor'''
|{{Hl2}} |'''Initial readings'''
|{{Hl2}} |'''Description'''
|{{Hl2}} |'''Student'''


== Ongoing Topics ==


== Completed Topics ==
== Completed Topics ==
Line 85: Line 212:
|{{Hl2}} |'''Description'''
|{{Hl2}} |'''Description'''
|{{Hl2}} |'''Student'''
|{{Hl2}} |'''Student'''
 
|-
| OCR (Optical Character Recognition) and Annotation Transfer (Bachelor Project+Thesis)
|[http://www.net.informatik.uni-goettingen.de/?q=people/dr-tingting-yuan Tingting Yuan]
|
|
| Assigned to Jiaying
|-
| AI for Games (Bachelor Project+Thesis)
|[http://www.net.informatik.uni-goettingen.de/?q=people/dr-tingting-yuan Tingting Yuan]
|
|
| Completed by Jason
|-
| Neural video analytics(Master Thesis)
|[http://www.net.informatik.uni-goettingen.de/?q=people/dr-tingting-yuan Tingting Yuan]
|
|
| Completed by Mai
|-
| Submodel Federated learning (Bachelor Project + Thesis)
|[http://www.net.informatik.uni-goettingen.de/?q=people/dr-tingting-yuan Tingting Yuan]
|
|
| Completed by Zilin
|-
|-
|Bio-Data analysis (Student project)
|Bio-Data analysis (Student project)
Line 123: Line 273:
| Assigned to Janosch Ruff   
| Assigned to Janosch Ruff   
|-
|-
|}
|-
| Personalized Recommender System Design  (Master thesis Project)
| [http://www.net.informatik.uni-goettingen.de/people/hong_huang Hong Huang]
|
| Build a personalized context-aware recommender system for customers according to their own interest.   
| Build a personalized context-aware recommender system for customers according to their own interest.   
|
|
|
| Completed by Haile Misgna
| Completed by Haile Misgna
|-
|-
| Emotion Patterns Analysis in OSNs  (Bachelor thesis Project)
| Emotion Patterns Analysis in OSNs  (Bachelor thesis Project)
| [http://www.net.informatik.uni-goettingen.de/people/hong_huang Hong Huang],[http://www.net.informatik.uni-goettingen.de/people/xu_chen Xu Chen]
| [http://www.net.informatik.uni-goettingen.de/people/hong_huang Hong Huang],[http://www.net.informatik.uni-goettingen.de/people/xu_chen Xu Chen]
|  
|
| We aim to study the emotion patterns in the Twitter service and predict the future emotion status of users.   
| We aim to study the emotion patterns in the Twitter service and predict the future emotion status of users.   
| Completed by Stefan Peters
| Completed by Stefan Peters
Line 262: Line 410:


=== Social Networking(finished) ===
=== Social Networking(finished) ===
* '''New!''' [[Goettingen Assistant: Android App Development (assigned)]] (P) ([http://www.net.informatik.uni-goettingen.de/people/shichang_ding Shichang Ding])  
* '''New!''' [[Goettingen Assistant: Android App Development (completed)]] (P) ([http://www.net.informatik.uni-goettingen.de/people/shichang_ding Shichang Ding])  
* [[Topic prediction in online social networks]] (B/M/P)([http://www.net.informatik.uni-goettingen.de/people/hong_huang Hong Huang])
* [[Topic prediction in online social networks]] (B/M/P)([http://www.net.informatik.uni-goettingen.de/people/hong_huang Hong Huang])
* [[Mining emotion patterns in online social networks]] (B/M/P)([http://www.net.informatik.uni-goettingen.de/people/hong_huang Hong Huang])
* [[Mining emotion patterns in online social networks]] (B/M/P)([http://www.net.informatik.uni-goettingen.de/people/hong_huang Hong Huang])

Latest revision as of 19:13, 13 October 2024

An introduction to the Computer Networks group

See a poster for a general overview, an anchor to our research activities, a list of social computing related or networking-related publications, and the annual report(s) for our recent activities.


Joint PhD Program with University of Sydney

From September 2024 on there will be the possibility to start a joint PhD with the University of Sydney (Australia). PhD students will stay in both Göttingen and Sydney for at least one year and can achieve two PhD degrees. For more information, please contact Prof. Xiaoming Fu [fu@cs.uni-goettingen.de].

In November/December 2023, Fabian visited research groups in Melbourne and Sydney. Impressions of his visit can be seen here: pdf


Open Theses and Student Project Topics

The Computer Networks Group is always looking for motivated students to work on various topics. If you are interested in any of the projects below, or if you have other ideas and are willing to work with us, please don't hesitate to contact us.

  • (B) Bachelor thesis
  • (M) Master thesis
  • (P) Student project


* New! Efficient Live Volumetric Video Streaming System

The exponential growth of digital data and multimedia content necessitates robust and efficient systems to handle the streaming of high-resolution, three-dimensional volumetric videos. These videos offer a more immersive and realistic experience, making them increasingly used in various sectors such as virtual reality, augmented reality, and entertainment. The challenge here lies in creating a system that can handle the high-bandwidth and computation-intensive demands of live volumetric video streaming while ensuring the delivery of a seamless and high-quality user experience. This project conceptualizes the development and optimization of efficient algorithms and systems to handle volumetric video streams, mitigating bandwidth cost and latency issues. We expect you to have a background in video streaming technologies, computer vision, and programming skills.

Please contact Yanlong Huang[yanlong.huang@cs.uni-goettingen.de]

* New! Edge-Cloud Orchestration for LiDAR-based Traffic Analysis

The imminent era of smart cities and autonomous vehicles paves the way for the deployment and operation of advanced monitoring and processing systems. Among these, LiDAR technology stands out for its ability to provide high-resolution, three-dimensional traffic data, becoming an essential component for efficient traffic analysis and management. However, the computation-intensive and latency-sensitive nature of LiDAR data processing poses significant challenges and dictates the need for efficient orchestration between edge and cloud computing resources. Edge-Cloud Orchestration offers an innovative solution to this problem by bridging the gap between these two technologies, enabling the low-latency processing of complex LiDAR data. It would be good if you have a background in point cloud processing/cloud computing, K8s, and programming skills.

Please contact Yanlong Huang[yanlong.huang@cs.uni-goettingen.de]

* New! Blockchain-based Spectrum and Computation Resources Sharing in Mobile Networks

The sixth-generation (6G) system is widely envisioned as a global network consisting of pervasive devices that interact with each other. Besides exchanging information, these peer entities also share heterogeneous and distributed network resources. Blockchain is a promising technology to secure resource sharing in a peer-to-peer way. We need students for this topic. We expect you have a background in computer network and programming skills in Python.

Please contact Jin Xie [jin.xie@stud.uni-goettingen.de]

* New! Using LLM for Sentiment Knowledge Graph Construction (B/M/P)

Constructing a sentiment knowledge graph using Large Language Models (LLMs) like ChatGPT involves leveraging the model's capabilities to understand and analyze textual data, extract entities and relationships, perform sentiment analysis, and organize the information into a graph structure. We need students for this topic. We expect you have a background in knowledge graph and programming skills in Python.

Please contact Wenfang Wu [wenfang.wu@cs.uni-goettingen.de]

* New! Using LLM for Knowledge Graph Completion (B/M/P)

Large language models (LLMs), such as ChatGPT and GPT-4 (OpenAI, 2023), have extensive internal knowledge repositories from their vast pretraining corpora, which can be used as an extra knowledge base to alleviate information scarcity for the long-tail entities in Knowledge Graphs. However, there is no effective workflow design for LLM on KGC tasks. How to leverage the LLM to perform reasoning on the KG Completion (KGC) task is a noteworthy and significant topic. We need students for this topic. We expect you to have a background in knowledge graph and LLMs, you'd better have a programming skill in Python.

Please contact Tong Shen [shen.tong@cs.uni-goettingen.de]

* New! Tree Growth Detection using Satellite Images and Computer Vision Methods (B/M/P)

A tree planting project in Madagascar was initiated several years ago. The outcomes of this project shall now be evaluated by analyzing satellite images of the study area with Computer Vision methods. In a first step, very high resolution (VHR) satellite images from 2023 with a resolution of 0.5m will be used to identify trees with object detection / semantic segmentation. In the next step a lower resolution (5m) satellite image time series starting in 2015 will be used for change detection to identify, in which locations the project was (un)successful.

Please contact Fabian Wölk [fabian.woelk@cs.uni-goettingen.de]

* New! Emotional Support Conversation Generation based on LLM (B/M/P)

Emotional support conversation aims to reduce individuals' emotional distress through social interaction and help them understand and cope with the challenges they face. Using LLM to provide emotional support is a promising technology which can be used in customer service chats, mental health support and so on. We need students for this topic. We expect you have a background in dialogue generation and programming skills in Python.

Please contact Jing Li [jing.li@cs.uni-goettingen.de]

* New! Rumor control and detection method for social networks based on GCN

In social networks, rumors spread quickly and have a wide impact. Through GCN, the complex relationships between nodes in the network can be effectively captured, and the detection and propagation paths of rumors can be modeled and controlled. The core of this method is to improve the ability to identify and control the spread of rumors by jointly learning user behavior, information content, and network topology by building an information propagation graph. We need students in this topic. We expect you have a background in rumor detection and programming skills in Python.

Please contact Fei Gao [fei.gao@cs.uni-goettingen.de]

[Occupied] Image-to-Image Translation of Different Nightlight Image Types (B/M/P)

Nightlight intensities have been proven to be a good indicator for socio-economic status. However, for long-term temporal analyses their use can be challenging, as different satellites for sensing nightlight intensities operated at different times (DMSP OLS 1992-2014 and VIIRS 2012-2023). Both types differ not only in resolution, but there is also a big discrepancy in the optical appearance and value ranges. To obtain consistent nightlight images for temporal analysis, Image-to-Image Translation methods shall be used in this project/thesis for the conversion between both types. Finally the performance of the translated and original nightlight images for a regression on socio-economic indicators shall be evaluated.

Please contact Fabian Wölk [fabian.woelk@cs.uni-goettingen.de]

[Occupied] Satellite Image Indices and Machine Learning for Socio-economic Estimation (B/M/P)

There are several indices, which can be derived from satellite images. For example the Normalized Difference Vegetation Index (NDVI) indicates the presence and condition of vegetation, while the Normalized Difference Built-up Index (NDBI) indicates the presence of built-up areas such as buildings or roads. The distributions of these and other indices may have different explanatory power to estimate the socio-economic status of locations. Therefore in this project/thesis the regression performance of machine learning models - using statistics of these indices as features - to estimate socio-economic indicators shall be evaluated for the individual and also combined indices. Optionally, Convolutional Neural Networks (CNNs) can be applied additionally, which take the derived index images as input.

Please contact Fabian Wölk [fabian.woelk@cs.uni-goettingen.de]

* 3D natural hazard simulator

The aim of the project is to simulate representative natural hazards for hazard response, such as flooding and forest fire. A natural hazard response simulator will be implemented for both visualization and performance validation. For example, we can visualize the flooding of 2021 in Germany, and then validate the performance of drone deployment in hazard sensing and emergency communication. Here, we introduce some related works in virtual 3D scene which may help you to understand this project, e.g., Agents Toolkit (ML-Agents) [1], DisasterSim [2] and Airsim [3].

[1] Unity Technologies.Unity ML-Agents Toolkit. Jan 26, 2021.URL:https://github.com/Unity-Technologies/ml-agents. (accessed: 21.11.2021) [2] Wang, H., Liu, C. H., Dai, Z., Tang, J., & Wang, G. (2021, August). Energy-efficient 3D vehicular crowdsourcing for disaster response by distributed deep reinforcement learning. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining (pp. 3679-3687). [3] S. Shah, D. Dey, C. Lovett, and A. Kapoor. “Airsim: High-fidelity visual and physical simulation forautonomous vehicles”. In:Field and Service Robotics. Springer. 2018, pp. 621–635.

Please contact Prof. Xiaoming Fu [fu@cs.uni-goettingen.de](B/M/P)

* [Occupied] OCR (Optical Character Recognition) and Annotation Transfer

The aim of the project is to develop a tool/software that can convert a printed paper with annotations and text into electronic versions with text highlighting and annotations. The successful candidate will be responsible for developing this tool/software that can perform the following tasks:

1. Text Alignment: Develop algorithms to align the text in the electronic version with the original printed paper.

2. Annotation Recognition: Develop software that can recognize annotation areas in the printed paper and transfer them to the electronic version.

3. Transfer Annotations: Transfer annotations and highlighting from the paper-based article to the electronic version.

[1] https://medium.com/analytics-vidhya/opencv-perspective-transformation-9edffefb2143

[2] https://developer.adobe.com/analytics-apis/docs/2.0/guides/endpoints/annotations/

[3] https://developer.adobe.com/document-services/apis/pdf-services/

[4] https://www.cameralyze.co/blog/how-can-i-detect-lines-in-images-or-pdfs

Please contact Dr. Tingting Yuan [tingting.yuan@cs.uni-goettingen.de]] (B/M/P)

* Privacy-preserved Video Analytics

This project/thesis topic focuses on the protection of privacy in video analytics.

The project involves three key tasks:

1) Implementation of a system utilizing YOLO and CycleGANs/DataGen for video analysis and processing. The code for this is already available for use.

2) Development of a privacy protection mechanism by adjusting the level of blur applied to the video, taking into account a trade-off between inference accuracy (e.g., detection by YOLO) and the level of privacy protection.

3) Optimize the blur level for Pan-tilt-zoom cameras to ensure that the system effectively captures key visual information while still preserving privacy.

Please contact Dr. Tingting Yuan [tingting.yuan@cs.uni-goettingen.de] (B/M/P)

[1] Pecam: privacy-enhanced video streaming and analytics via securely-reversible transformation [1].

* AI for networking adaption

In this project/theses topic, you will explore how to make AI meets networking requirements (e.g., fluctuating network states). You will (1) deploy and test Genet[1]; (2)extend the Genet environment to multi-client environment (e.g., ABR); (3) deploy multi-agent algorithms on Genet and valid the performance.

[1] Genet: Automatic Curriculum Generation for Learning Adaptation in Networking [2]

Please contact Dr. Tingting Yuan [tingting.yuan@cs.uni-goettingen.de]] (B/M/P)

* [Occupied] Video analytics with deep reinforcement learning

The proliferation of video analytics is facilitated by the advances of deep learning and the low prices of high-resolution network-connected cameras. However, the accuracy improvement from deep learning is at the high computational cost. Although the state-of-the-art smart cameras can support deep learning method, the deployed surveillance and traffic camera paint a much bleaker resource picture. For example, DNNCam that ships with a high-end embedded NVIDIA TX2 GPU costs more than $2000 while the price of deployed traffic cameras today ranges $40-$200; these cameras typically loaded with a single-core CPU only provide very scarce compute resource. Because of this huge gap, typical video analytics applications, e.g., traffic cameras stream live video to remote server for further analysis. As a result, a natural question occurs: which video streaming configuration also server decoding configuration should we select to guarantee high analysis accuracy as well as not incur network congestion? To answer this question, we attempt to explore the performance of deep reinforcement learning under this scenario.

Please contact Dr. Tingting Yuan [tingting.yuan@cs.uni-goettingen.de], Weijun Wang [weijun.wang@informatik.uni-goettingen.de] (B/M/P)

* [Occupied] AI for Games

Can Artificial intelligence (AI) beat humans at games? AI has played an increasingly prominent and productive role in the gaming world. Implemented in many different ways, AI is used to improve game behaviors and environments. In this project, we will design AI algorithms (i.e., multi-agent reinforcement learning) for games (e.g., StarCraft: https://github.com/oxwhirl/smac). The main challenge here is to coordinate agents in achieving joint goals (i.e., win), such as by efficient communication.

[1]https://www.nature.com/articles/d41586-019-03298-6

Please contact Dr. Tingting Yuan [tingting.yuan@cs.uni-goettingen.de] (B/M/P)

* [Closed] Socioecomonic analysis based on spatiotemporal and linguistic analysis on microblogging data

Identifying the socioeconomic status (SES) of users in social media like Twitter or Weibo is useful e.g., for digitized advertisements and social policies. This study aims to collect profiles of Twitter users on selected topics such as culture or foreign language learning, extract the temporal, spatial and linguistic features, and compare different classification algorithms (e.g., decision tree, random forest, na\"{i}ve Bayes, deep learning, and Gaussian processes classifier) to predict the socioeconomic status.

[1] Ren Y, Xia T, Li Y, Chen X. Predicting socio-economic levels of urban regions via offline and online indicators. PLoS One. 2019;14(7):e0219058. Published 2019 Jul 10. doi:10.1371/journal.pone.0219058 [2] Pappalardo L, Pedreschi D, Smoreda Z, Giannotti F. Using Big Data to study the link between human mobility and socio-economic development. In: IEEE International Conference on Big Data 2015. doi:10.1109/BigData.2015.7363835 [3] Vasileios Lampos, Nikolaos Aletras, Jens K. Geyti, Bin Zou and Ingemar J. Cox (2016). Inferring the Socioeconomic Status of Social Media Users based on Behaviour and Language. Proceedings of the 38th European Conference on Information Retrieval (ECIR '16), pp. 689-695. doi:10.1007/978-3-319-30671-1_54

Please contact Prof. Xiaoming Fu [fu@cs.uni-goettingen.de](B/M/P)

[Closed] Super resolution technique for efficient video delivery

Super-resolution (SR) is one of the fundamental tasks in Computer vision. Video delivery on Internet or in WAN is important for various applications, eg., video analytics and video viewing. This project attempts to explore the potential of SR for video delivery. We expect you have Data Science and Computer Vision background, as well as programming skills like Python.

Please contact Weijun Wang [weijun.wang@informatik.uni-goettingen.de] (B/M/P)

[closed] Assessing city livability with big data

  • City livability is related to a number of factors, such as quality of life, job satisfaction, environment (green space, CO2/PM2.5, schooling/health support etc), policy, commuting time, entertainment. We utilize different data sources to understand their relation to the city livability, and analyze the coherent features which offer an evaluation framework for a city's attractiveness and livability for different types of citizens. We expect you have some statistics and machine learning background, as well as programming skills like Python.

Please contact Prof. Xiaoming Fu (B/M/P).

Socioeconomic analysis on commuters

  • New! Understanding the commuter behaviour and the factors that lead to commuting are more important today than ever before. With steadily increasing commuter numbers, the commuter traffic can be a major bottleneck for many cities. The increasing awareness of a good work-life balance leads to more people wanting shorter commuting distances. The commuter behaviour consequently plays an increasingly important role in city and transport planning and policy making. This topic aims to infer knowledge from commuter data, analyzing the influence of GDP, housing prices, family situation, income and job market on the decision to commute. We expect you have some statistics and machine learning background, as well as programming skills like Python.

Please contact Prof. Xiaoming Fu (B/M/P)


Socioeconomic Status and Internet Language Usage

  • New! Numerous people write social media posts and exchange messages with colleagues, friends, acquaintances or even strangers on different platforms. We would like to understand how the underlying social class membership (socioeconomic status) affects Internet users' language use, by investigating the sociolinguistic features in users' posts/messages across a multitude of datasets and their relationship to their socioeconomic status. We expect you have some statistics and textual analysis/natural language processing background, as well as programming skills like Python.

Please contact Prof. Xiaoming Fu (B/M/P)


[closed] Multimedia Resource Allocation for QoE Improvement by Deep Learning

  • Deep learning has been widely used in various real-time applications and systems. Dynamic resource allocation for multimedia (e.g. Video) to improve QoE is an interesting topic. We need three students for this topic. We expect you have a background in deep learning and computer network, as well as programming skills like Python and Go.

(1) one to realize and improve the system for video transmission and network configuration according to resource allocation policy;

  • You will use QUIC [3] protocol (Go language) to implement network allocation and place the server part on AWS/other clouds.

(2) one to implement the deep learning algorithm to design the controller for dynamic resource allocations.

(3) one student for the QoE model using deep learning.

Please contact Dr.Tingting Yuan [tingting.yuan@cs.uni-goettingen.de ] and Weijun Wang [weijun.wang@informatik.uni-goettingen.de](B/M/P)

Ongoing Topics

Completed Topics

Topic Topic advisor Initial readings Description Student
OCR (Optical Character Recognition) and Annotation Transfer (Bachelor Project+Thesis) Tingting Yuan Assigned to Jiaying
AI for Games (Bachelor Project+Thesis) Tingting Yuan Completed by Jason
Neural video analytics(Master Thesis) Tingting Yuan Completed by Mai
Submodel Federated learning (Bachelor Project + Thesis) Tingting Yuan Completed by Zilin
Bio-Data analysis (Student project) Mayutan Arumaithurai Assigned to Lindrit
Sentiment Analysis (Student project) Hong Huang Assigned to Beatrice Kateule
Analysis of Business Transitions: A Case Study of Yelp (Bachelor Thesis) Hong Huang Assigned to Marcus Thomas Khalil
Understanding Group Patterns in Q&A Services (Bachelor Thesis) Hong Huang Assigned to Jonas Koopmann
COPSS-lite : Lightweight ICN Based Pub/Sub for IoT Environments (Master Thesis) Sripriya Assigned to Haitao Wang
A ICN Gateway for IoT (Bachelor Thesis) Sripriya Assigned to Janosch Ruff
Build a personalized context-aware recommender system for customers according to their own interest. Completed by Haile Misgna
Emotion Patterns Analysis in OSNs (Bachelor thesis Project) Hong Huang,Xu Chen We aim to study the emotion patterns in the Twitter service and predict the future emotion status of users. Completed by Stefan Peters
Implementation of a pub/sub system (Student project) Jiachen Chen Mayutan Arumaithurai The aim of the work is to show how application layer intelligence cupled with network layer pub/sub can be beneficial to both users as well as network operators Completed by Sripriya
Large Scale Distributed Natural Language Document Generation System (Student project at IBM) Mayutan Arumaithurai The work was done at IBM Completed by Eeran Maiti
Investigate real time streaming tools for large scale data processing (Student project) Mayutan Arumaithurai The aim of the work is to compare real time streaming tools. Completed by Ram
Software-Defined Networking and Network Operating System (Student project) Mayutan Arumaithurai SDN based ntwork operating system Completed by Rasha
GEMSTONE goes Mobile (BSc Thesis/Student Project) David Koll Portation of a Decentralized Online Social Network to the Android Platform Completed by Fabien Mathey and improved by Eeran Maiti
Transitioning of Social Graphs between Multiple Online Social Networks (BSc Thesis) David Koll Portation of friendship graphs between different Online Social Networks Completed by Kai-Stephan Jacobsen
Prevention and Mitigation of (D)DoS Attacks in Enterprise Environments (BSc Thesis) David Koll An analysis of enterprise infrastructures and their vulnerarbility towards attacks from the outside. Completed by David Kelterer
Sybils in Disguise: An Attacker View on OSN-based Sybil Defenses (Student Project and MSc Thesis) David Koll An analysis of fake detection approaches in social networks. Completed by Martin Schwarzmaier
Design and Implementation of a distributed OSN on Home Gateways (Student project and Master's Thesis) David Koll Completed by Dieter Lechler


QUIC or Multipath QUIC Design

  • New! Implement algorithms for improving QUIC or Multipath QUIC performance. (B/M/P, at least familiar with one programming language (eg. C++, go or Python).) Please contact Yali Yuan (Finished)


Segment Routing based SDN

  • NEW! Winter 2018/2019 There are many topics opened for Master and Bachelor theses and projects. Please contact Osamah Barakat


Software Defined Networks (SDN)


Data Analysis with Bio data

  • NEW! 2019 ' if you are interested in topics in this area please get in contact with Mayutan Arumaithurai

Data Crawling and analysis

Massive Data Mining and Recommender System

  • if you are interested in other topics in this area please get in contact with Hong Huang

Social Networking(finished)


  • For a full list of older topics please go here.