69
edits
(→Topics) |
|||
Line 104: | Line 104: | ||
| In this topic, you will study methods to crawl the dataset from social networks(e.g. YouTube) and utilize social science network analysis in any topic you are interested in (science/education/language…) to find out the network structure and compare the difference among different topics. | | In this topic, you will study methods to crawl the dataset from social networks(e.g. YouTube) and utilize social science network analysis in any topic you are interested in (science/education/language…) to find out the network structure and compare the difference among different topics. | ||
| Python(Data crawling, cleaning, statistical data analysis, modeling and visualization), basic graph knowledge | | Python(Data crawling, cleaning, statistical data analysis, modeling and visualization), basic graph knowledge | ||
| [Zhengze Li, zhengze.li@cs.uni-goettingen.de] | | [Zhengze Li, zhengze.li@cs.uni-goettingen.de] | ||
| | | | ||
Line 128: | Line 120: | ||
| In this topic, students will study how to use cutting-edge machine learning models to predict when industrial equipment need to be maintained before crashing. | | In this topic, students will study how to use cutting-edge machine learning models to predict when industrial equipment need to be maintained before crashing. | ||
| Python(Cleaning, EDA, Modeling and Visualization). XAI knowledge is a plus. | | Python(Cleaning, EDA, Modeling and Visualization). XAI knowledge is a plus. | ||
| [Zhengze Li, zhengze.li@cs.uni-goettingen.de] | | [Zhengze Li, zhengze.li@cs.uni-goettingen.de] | ||
| | | |
edits