Machine Learning and Pervasive Computing (Summer 2015): Difference between revisions
Jump to navigation
Jump to search
(7 intermediate revisions by the same user not shown) | |||
Line 2: | Line 2: | ||
{{CourseDetails | {{CourseDetails | ||
|credits=180h, 5 ECTS | |credits=180h, 5 ECTS | ||
|module=M.Inf.1223: Spezielle fortgeschrittene Aspekte der Computernetzwerke | |module=M.Inf.1223: Spezielle fortgeschrittene Aspekte der Computernetzwerke; ITIS: 3.33 | ||
|lecturer=[https://univz.uni-goettingen.de/qisserver/rds?state=verpublish&status=init&vmfile=no&moduleCall=webInfo&publishConfFile=webInfoPerson&publishSubDir=personal&keep=y&purge=y&personal.pid=128205 Stephan Sigg] | |lecturer=[https://univz.uni-goettingen.de/qisserver/rds?state=verpublish&status=init&vmfile=no&moduleCall=webInfo&publishConfFile=webInfoPerson&publishSubDir=personal&keep=y&purge=y&personal.pid=128205 Stephan Sigg] | ||
|ta= -- | |ta= -- | ||
Line 35: | Line 35: | ||
** [[Media:MLnotes_01.pdf | Lecture notes (Introduction) (pdf)]] | ** [[Media:MLnotes_01.pdf | Lecture notes (Introduction) (pdf)]] | ||
* Monday, '''April 20th, 2015, 08.15 - 09.45''': Lecture 2 | * Monday, '''April 20th, 2015, 08.15 - 09.45''': Lecture 2 | ||
** [[Media:ML_02.pdf | Rule-based (pdf)]] | |||
* Monday, '''April 27th, 2015, 08.15 - 09.45''': Lecture 3 | * Monday, '''April 27th, 2015, 08.15 - 09.45''': Lecture 3 | ||
** [[Media:ML_03.pdf | Decision tree (pdf)]] | |||
** [[Media:ML_practical_01.pdf | Projects meeting (Group allocation) (pdf)]] | |||
* Monday, '''May 04th, 2015, 08.15 - 09.45''': Lecture 4 | * Monday, '''May 04th, 2015, 08.15 - 09.45''': Lecture 4 | ||
** [[Media:ML_04.pdf | Regression (pdf)]] | |||
** [[Media:MLnotes_04.pdf | Lecture notes (Regression) (pdf)]] | |||
** [[Media:MLassignment_01.pdf | Assignment 01 (pdf)]] | |||
* Monday, '''May 11th, 2015, 08.15 - 09.45''': No lecture | * Monday, '''May 11th, 2015, 08.15 - 09.45''': No lecture | ||
* Monday, '''May 18th, 2015, 08.15 - 09.45''': Lecture 5 | * Monday, '''May 18th, 2015, 08.15 - 09.45''': Lecture 5 | ||
** [[Media:ML_05.pdf | Local random search (pdf)]] | |||
** [[Media:MLassignment_02.pdf | Assignment 02 (pdf)]] | |||
* Monday, '''May 25th, 2015, 08.15 - 09.45''': No lecture | * Monday, '''May 25th, 2015, 08.15 - 09.45''': No lecture | ||
* Monday, '''June 01st, 2015, 08.15 - 09.45''': Lecture 6 | * Monday, '''June 01st, 2015, 08.15 - 09.45''': Lecture 6 | ||
** [[Media:ML_06.pdf | High dimensional data (pdf)]] | |||
** [[Media:MLnotes_06.pdf | Lecture notes (High dimensional data) (pdf)]] | |||
** [[Media:MLassignment_03.pdf | Assignment 03 (pdf)]] | |||
* Monday, '''June 08th, 2015, 08.15 - 09.45''': Lecture 7 | * Monday, '''June 08th, 2015, 08.15 - 09.45''': Lecture 7 | ||
** [[Media:ML_07.pdf | Artificial Neural Networks (pdf)]] | |||
** [[Media:MLnotes_07.pdf | Lecture notes (Artificial Neural Networks) (pdf)]] | |||
* Monday, '''June 15th, 2015, 08.15 - 09.45''': Lecture 8 | * Monday, '''June 15th, 2015, 08.15 - 09.45''': Lecture 8 | ||
* Monday, '''June 22nd, 2015, 08.15 - 09.45''': Lecture | ** [[Media:ML_08.pdf | Instance-based learning (pdf)]] | ||
** [[Media:MLassignment_04.pdf | Assignment 04 (pdf)]] | |||
* Monday, '''June 22nd, 2015, 08.15 - 09.45''': Lecture 9 | |||
** [[Media:ML_09.pdf | Probabilistic Graphical Models (pdf)]] | |||
* Monday, '''June 29th, 2015, 08.15 - 09.45''': Lecture 10 | * Monday, '''June 29th, 2015, 08.15 - 09.45''': Lecture 10 | ||
** [[Media:ML_10.pdf | Topic Models (pdf)]] | |||
* Monday, '''July 06th, 2015, 08.15 - 09.45''': Lecture 11 | * Monday, '''July 06th, 2015, 08.15 - 09.45''': Lecture 11 | ||
** [[Media:ML_11.pdf | Unsupervised Learning (pdf)]] | |||
** [[Media:ML_11-2.pdf | Clustering and density based clustering (Thach Nguyen) (pdf)]] | |||
* Monday, '''July 13th, 2015, 08.15 - 09.45''': Lecture 12 | * Monday, '''July 13th, 2015, 08.15 - 09.45''': Lecture 12 | ||
** [[Media:ML_12.pdf | Anomaly detection, Online learning, Recommender Systems (pdf)]] | |||
==Requirements== | ==Requirements== |
Latest revision as of 09:09, 6 July 2015
Details
Workload/ECTS Credits: | 180h, 5 ECTS |
Module: | M.Inf.1223: Spezielle fortgeschrittene Aspekte der Computernetzwerke; ITIS: 3.33 |
Lecturer: | Stephan Sigg |
Teaching assistant: | -- |
Time: | Mondays, 08.15 - 09.45.; Exercise: (bi-weekly) |
Place: | IfI 3.101 |
UniVZ | [1] |
Course Overview
The course will give a comprehensive overview on Machine learning with applications in Pervasive Computing.
- Course topics
- Introduction to Machine learning
- Features and feature extraction
- Feature subset selection
- Performance metrics
- Rule-based learning
- Regression approaches
- High dimensional data
- Artificial Neural Network learning
- Probabilistic approaches
- Topic models
- nearest neighbour methods
- Unsupervised learning and Clustering
- Anomaly detection
- Recommender systems
Schedule
- Monday, April 13th, 2015, 08.15 - 09.45: Lecture 1
- Monday, April 20th, 2015, 08.15 - 09.45: Lecture 2
- Monday, April 27th, 2015, 08.15 - 09.45: Lecture 3
- Monday, May 04th, 2015, 08.15 - 09.45: Lecture 4
- Monday, May 11th, 2015, 08.15 - 09.45: No lecture
- Monday, May 18th, 2015, 08.15 - 09.45: Lecture 5
- Monday, May 25th, 2015, 08.15 - 09.45: No lecture
- Monday, June 01st, 2015, 08.15 - 09.45: Lecture 6
- Monday, June 08th, 2015, 08.15 - 09.45: Lecture 7
- Monday, June 15th, 2015, 08.15 - 09.45: Lecture 8
- Monday, June 22nd, 2015, 08.15 - 09.45: Lecture 9
- Monday, June 29th, 2015, 08.15 - 09.45: Lecture 10
- Monday, July 06th, 2015, 08.15 - 09.45: Lecture 11
- Monday, July 13th, 2015, 08.15 - 09.45: Lecture 12
Requirements
- Active participation in the exercises required.
Reading List
- Pervasive and Ubiquitous Computing
- Activity recognition